Electron Deformation Density Distributions in Binuclear Complexes of Transition Metals : Computation and Interpretation from AB Initio Molecular Orbital Wavefunctions

  • Marc Bénard


The theoretical electron deformation density distributions obtained from ab initio MO wavefunctions for [C5H5Fe(CO)2]2, (n5-C5H5Ni)2C2H2, Cr2(O2CH)4 and Mo2(O2CH)4 are reviewed. Several sections of these distributions are displayed, together with their experimental counterpart. A systematic comparison is performed between the deformation density distributions and the results of the Mulliken population analysis obtained from the wavefunctions. This comparison provides a first rationalization of the electron deformation density pattern in the vicinity of a metal-metal axis. The strong dependence of this pattern upon the location of the metal in the periodic table, the specific character of d-orbitals relatively to the orbital expansion associated with covalent bonding, the influence of the depopulation of the external s orbital associated with transition metal complexation, are emphasized. It is shown that these factors, combined in some cases with the lack of a direct metal-metal bond, can account for the puzzling absence of charge accumulation detected in most deformation density distributions obtained for binuclear complexes.


High Occupied Molecular Orbital Binuclear Complex Accumulation Region Mulliken Population Analysis Deformation Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Presented at the Symposium “Electron Distributions and the Chemical Bond” 181st ACS National Meeting, Atlanta (1981).Google Scholar
  2. 2.
    P. Coppens, MTP International Review of Science : Physical Chemistry, Ser. 2, Vol. 11 (1975).Google Scholar
  3. 3.
    P. Coppens, E.D. Stevens, Adv. Quantum Chem. Vol. 10 (Academic Press), pp. 1–35 (1977).Google Scholar
  4. 4.
    Y. Wang, P. Coppens, Inorg. Chem. 15:1122 (1976).CrossRefGoogle Scholar
  5. 5.
    B. Rees, Acta Crystallogr. A32:483 (1976).Google Scholar
  6. 6.
    J.L. Staudenmann, P. Coppens, J. Muller, J. Solid State Comm. 19:29 (1976).CrossRefGoogle Scholar
  7. 7.
    W. Geibel, G. Wilke, R. Goddard, C. Krüger, R. Mynott, J. Organometal. Chem. 160:139 (1978).CrossRefGoogle Scholar
  8. 8.
    A. Mitschler, B. Rees, M.S. Lehmann, J. Am. Chem. Soc. 100:3390 (1978).CrossRefGoogle Scholar
  9. 9.
    M. Bénard, P. Coppens, M.L. De Lucia, E.D. Stevens, Inorg. Chem. 19:1924 (1980).CrossRefGoogle Scholar
  10. 10.
    E.D. Stevens, J. Rys, P. Coppens, J. Am. Chem. Soc. 100:2324 (1978).CrossRefGoogle Scholar
  11. 11.
    F.L. Hirshfield, S. Rzotkiewicz, Molec. Phys. 27:1319 (1974).CrossRefGoogle Scholar
  12. 12.
    M. Bénard, A. Dedieu, J. Demuynck, M.-M. Rohmer, A. Strich, A. Veillard, ASTERIX, a system of programs for the Univac 1110, unpublished.Google Scholar
  13. 12a.
    M. Bénard, M. Barry, Comp. Chem. 3:121 (1979).CrossRefGoogle Scholar
  14. 13.
    J.M. Coleman, L.F. Dahl, J. Am. Chem. Soc. 89:542 (1967).CrossRefGoogle Scholar
  15. 13a.
    L.F. Dahl, E.R. De Gil, R.D. Feltham, J. Am. Chem. Soc. 91:1653 (1969).CrossRefGoogle Scholar
  16. 14.
    M. Bénard, Inorg. Chem. 18:2782 (1979).CrossRefGoogle Scholar
  17. 15.
    K. Hino, Y. Saïto, M. Bénard, Acta Crystallogr., in press.Google Scholar
  18. 16.
    M. Bénard, J. Am. Chem. Soc. 100:7740 (1978).CrossRefGoogle Scholar
  19. 17.
    B.K. Teo, M.B. Hall, R.F. Fenske, L.F. Dahl, Inorg. Chem. 14:3103 (1975).CrossRefGoogle Scholar
  20. 18.
    P. Ros, unpublished (1979).Google Scholar
  21. 19.
    The LCAO-Hartree-Fock Slater method 20 replaces the nonlocal exchange potential occuring in Hartree-Fock equations by the Xα exchange potential. However, the HFS equations are not solved by introducing the muffin-tin approximation (scattered wave Xα method 21), which is known to give a rather poor representation of the true molecular potential22. These equations are expanded in linear combinations of STO’s and solved through the discrete variation method 23.Google Scholar
  22. 20.
    E.J. Baerends, P. Ros, Chem. Phys. 2:52 (1973).CrossRefGoogle Scholar
  23. 20a.
    Int. J. Quantum Chem. (Symp.) 12:169 (1978).Google Scholar
  24. 21.
    K.H. Johnson, J. Chem. Phys. 45:3085 (1966).CrossRefGoogle Scholar
  25. 22.
    E.J. Baerends, P. Ros, Chem. Phys. 8:412 (1975).CrossRefGoogle Scholar
  26. 23.
    D.E. Ellis, G.S. Painter, Phys. Rev. B2:2887 (1970). Computational Methods in Band Theory (Plenum, New-York), pp. 271–277 (1971).Google Scholar
  27. 24.
    The population of this orbital also depends to some extent on the population of dx 2 and dy 2 which are more difficult to estimate from the experimental maps. However, the experimental distribution does not display any significant electron deficient region susceptible to decrease the population of the d 2z 2 ™x 2 ™y 2 orbital 4.Google Scholar
  28. 25.
    Except in specific cases, such as complexes of chromium, molybdenum, manganese or any metal displaying in its ground state configuration an average population of 1 electron per d-orbital. In such cases the orbital expansion phenomena along the bond axis are not masked anymore by differences in orbital population between the molecule and the spherically averaged atom (see for instance the discussion concerning Cr2(O2CH)4 and Mo2(O2CH)4).Google Scholar
  29. 26.
    The overall d-electroh population of nickel is increased from 8 el. in the atom to 8.86 el. in the molecule. The electron deficient environment external to the peaks related with d-orbitals is obviously due to the decrease in population, of the diffuse 4s orbital.Google Scholar
  30. 27.
    E. Clementi, IBM J. Res. Devel. Suppl. 9:2 (1965).CrossRefGoogle Scholar
  31. 28.
    It has been shown 29 that addition of polarization functions to the double-zeta STO basis set did not modify significantly the electron density distribution.Google Scholar
  32. 29.
    W. Heijser, E.J. Baerends, P. Ros, J. Molec. Struct. 63:109 (1980).CrossRefGoogle Scholar
  33. 30.
    F.A. Cotton, Inorg. Chem. 4:334 (1965).CrossRefGoogle Scholar
  34. 31.
    F.A. Cotton, B.G. De Boer, M.D. La Prade, J.R. Pipal, D.A. Ucko, J. Am. Chem. Soc. 92:2926 (1970). Acta Crystallogr. B27:1664 (1971).CrossRefGoogle Scholar
  35. 32.
    M. Bénard, J. Am. Chem. Soc. 100:2354 (1978).CrossRefGoogle Scholar
  36. 33.
    C.D. Garner, I.H. Hillier, M.F. Guest, J.C. Green, A.W. Coleman, Chem. Phys. Letters 41:91 (1976).CrossRefGoogle Scholar
  37. 34.
    M. Bénard, J. Chem. Phys. 71:2546 (1979).CrossRefGoogle Scholar
  38. 35.
    P.J. Hay, J. Am. Chem. Soc. 100:2897 (1978).CrossRefGoogle Scholar
  39. 36.
    B. Rees, A. Mitschier, J. Am. Chem. Soc. 98:7918 (1976).CrossRefGoogle Scholar
  40. 36a.
    P. Coppens, E.D. Stevens, Israel J. Chem. 16:175 (1977)Google Scholar
  41. 36b.
    E.D. Stevens, J. Rys, P. Coppens, Acta Crystallogr. A33:333 (1977).Google Scholar
  42. 37.
    R. Wiest, M. Bénard, unpublished (1980).Google Scholar
  43. 38.
    F.A. Cotton, M. Extine, L.D. Gage, Inorg. Chem. 17:172, 17:176 (1978).CrossRefGoogle Scholar
  44. 39.
    2.36 A for Cr2(O2CCH3)4, 2H2O 31, 2.09 Å for Mo2(O2CCH3)4 4C.Google Scholar
  45. 40.
    F.A. Cotton, Z.C. Mester, T.R. Webb, Acta Crystallogr. B30:2768 (1974).Google Scholar
  46. 41.
    A.R. Gregory, Chem. Phys. Letters 11:271 (1971).CrossRefGoogle Scholar
  47. 41a.
    G. Berthier, B. Levy, L. Praud, Gazzetta Chim. Ital. 108:377 (1978).Google Scholar
  48. 42.
    B. Rees, Acta Crystallogr. A32:483 (1976) ; A34:254 (1978) ; Israël J. Chem. 16:180 (1977).Google Scholar
  49. 43.
    W. Heijser, Ph. D. Thesis, Amsterdam (1979).Google Scholar
  50. 43a.
    W. Heijser, E.J. Baerends, P. Ros, Proceedings of the Faraday Symposium 14, Manchester (UK), in press (1980).Google Scholar
  51. 44.
    In fact, contrary to the case of Cr2(O2CH)4, the CI expansion did not yield any significant modification of the deformation density distribution, relatively to the quadruply bonding configuration obtained at the SCF level. This confirms that the electronic structure of Mo2(O2CH)4 resembles more the classical scheme of the quadruple bond than that of Cr2(O2CH)4.Google Scholar
  52. 45.
    B. Rees, A. Mitschler, unpublished (1980).Google Scholar
  53. 46.
    F.A. Cotton, W.H. Ilsley, W. Kaim, J. Am. Chem. Soc. 102:3464 (1980).Google Scholar
  54. 47.
    F.A. Cotton, S. Koch, M. Millar, J. Am. Chem. Soc. 99:7372 (1977).CrossRefGoogle Scholar
  55. 47a.
    A. Bino, F.A. Cotton, W. Kaim, J. Am. Chem. Soc. 101:2506 (1979).CrossRefGoogle Scholar
  56. 48.
    W.C. Trogler, J. Chem. Education 57:425 (1980).CrossRefGoogle Scholar
  57. 49.
    M.G. Vincent, K. Yvon, A. Grüttner, J. Ashkenazi, Acta Cryst. A36:803 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Marc Bénard
    • 1
  1. 1.E.R. n∘ 139 du C.N.R.S. Laboratoire de Chimie QuantiqueUniversité L. PasteurStrasbourgFrance

Personalised recommendations