Mapping Functional Alterations in the CNS With [14C]Deoxyglucose

  • James McCulloch


The advent of the autoradiographic [14C]-2-deoxyglucose technique (Sokoloff et al., 1977) has provided neuroscientists with an enormously potent tool with which to investigate functional events within the central nervous system. Two simple premises provide the conceptual basis for this novel approach. First, the energy requirements of cerebral tissue are derived almost exclusively from the aerobic catabolism of glucose (Sokoloff, 1977; Siesjo, 1978). Second, functional activity within any region of the central nervous system is intimately and directly related to energy consumption within that region (see Kennedy et al., 1975; Sokoloff, 1977). Thus, the ability to determine the rate of glucose consumption simultaneously in all neuroanatomically defined regions of the CNS of conscious animals by the use of the 2-deoxyglucose technique has been widely utilized to provide new insight into CNS processes.


Caudate Nucleus Locus Coeruleus Superior Colliculus Glucose Utilization Thyrotropin Release Hormone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, W. C., Delanoy, R. L., Dunn, A. J., and Zornetzer, S. F., 1979, Locus coeruleus stimulation decreases deoxyglucose uptake in ipsilateral mouse cerebral cortex, Brain Res. 172: 387–392.PubMedGoogle Scholar
  2. Aghajanian, G. K., and Bunney, B. S., 1977, Dopamine “Autoreceptors”: pharmacological characterization by microiontophoretic single cell recording studies, Naunyn-Schmie- deberg’s Arch. Pharmacol. 297: 1–7.Google Scholar
  3. Aghajanian, G. K., and Wang, R. Y., 1977, Habenular and other midbrain raphe afferents demonstrated by a modified retrograde tracing technique, Brain Res. 122: 229–242.PubMedGoogle Scholar
  4. Ahlenius, S., 1978, Potentiation by haloperidol of the catalepsy produced by lesions in the parafascicular nucleus of the rat, Brain res. 150: 648–652.PubMedGoogle Scholar
  5. Alexander, R. W., Davis, J. N., and Lefkowitz, R. J., 1975, Direct identification and characterisation of β-adrenergic receptors in rat brain, Nature (London) 258: 437–440.Google Scholar
  6. Andersson, K., Schwarcz, R., and Fuxe, K., 1980, Compensatory bilateral changes in dopamine turnover after striatal kainite lesion, Nature (London) 283: 94–96.Google Scholar
  7. Bachelard, H. S., 1971, Specificity and kinetic properties of monosaccharide uptake into guinea pig cerebral cortex in vitro, J. Neurochem. 18: 213–222.PubMedGoogle Scholar
  8. Baraldi, M., Grandison, L., and Guidotti, A., 1979, Distribution and metabolism of muscimol in the brain and other tissues of the rat, Neuropharmacology 18: 57–62.PubMedGoogle Scholar
  9. Barker, J. L., 1977, Physiological roles of peptides in the nervous system, in: Peptides in Neurobiology ( H. Gainer, ed.), pp. 295–343, Plenum Press, New York.Google Scholar
  10. Basinger, S. F., Gordon, W. C., and Lam, D. M. K., 1979, Differential labelling of retinal neurones by 3H-2-deoxyglucose, Nature (London) 280: 682–684.Google Scholar
  11. Beckstead, R. M., 1976, Convergent thalamic and mesencephalic projections to the anterior medial cortex in the rat, J. Comp. Neurol 166: 403–416.PubMedGoogle Scholar
  12. Beckstead, R. M., Domesick, V. B., and Nauta, W.J. H., 1979, Efferent connections of the substantia nigra and ventral tegmental area in the rat, Brain Res. 175: 191–217.PubMedGoogle Scholar
  13. Berntman, L., Carlsson, C., Hagerdal, M., and Siesjo, B. K., 1977, Circulatory and metabolic effects in the brain induced by amphetamine sulphate, Acta Physiol. Scand 102: 310–323.Google Scholar
  14. Biggio, G., and Guidotti, A., 1977, Regulation of cyclic GMP by a striatal dopaminergic mechanism, Nature (London) 265: 240–242.Google Scholar
  15. Blackwood, D. H. R., and Kapoor, V., 1980, Regional changes in cerebral glucose utilization in kindled rats during convulsions, Br. J. Pharmacol 68: 133 P.Google Scholar
  16. Borgström, L., Chapman, A. G., and Siesjo, B. K., 1976a, Glucose consumption in the cerebral cortex of rat during bicuculline-induced status epilepticus, J. Neurochem 27: 971–973.Google Scholar
  17. Borgström, L., Norberg, K., and Siesjo, B. K., 1976b;, Glucose consumption in rat cerebral cortex in normoxia, hypoxia and hypercapnia, Acta Physiol. Scand 96: 569–574.Google Scholar
  18. Bradbury, A. F., Smyth, D. G., Snell, C. R., Birdsall, N. J. M., and Hulme, E. C., 1976, C fragment of lipotropin has a high affinity for brain opiate receptors, Nature 260: 793–795.Google Scholar
  19. Brown, J. H., and Makman, M. H., 1972, Stimulation by dopamine of adenylate cyclase in retinal homogenates and of adenosine-3’,5’-cyclic monophosphate formation in intact retina, Proc. Natl. Acad. Sci. U.S.A 69: 539–543.PubMedGoogle Scholar
  20. Brown, J. H., and Makman, M. H., 1973, Influence of neuroleptic drugs and apomorphine on dopamine-sensitive adenylate cyclase of retina, J. Neurochem 21: 477–479.PubMedGoogle Scholar
  21. Brown, L. L., and Wolfson, L. I., 1978, Apomorphine increases glucose utilization in the substantia nigra, subthalamic nucleus, and corpus striatum of rat, Brain Res. 140: 188–193.PubMedGoogle Scholar
  22. Brown, L. L., Makman, M. H., Wolfson, L. I., Dvorkin, B., Warner, C., and Katzman, R., 1979, A direct role of dopamine in the rat subthalamic nucleus and an adjacent intrapeduncular area, Science 206: 1416–1418.PubMedGoogle Scholar
  23. Brown, M., and Vale, W., 1975, Central nervous system effects of hypothalamic peptides, Endocrinology 96: 1333–1336.PubMedGoogle Scholar
  24. Brownstein, M., 1982, Hypothalamic Releasing Hormones, Non-endocrine Aspects, in: Handbook of Psychopharmacology (L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds.), Vol. 17, in press, Plenum Press, New York.Google Scholar
  25. Bunney, B. S., and Aghajanian, G. K., 1976, Dopamine and norepinephrine innervated cells in the rat prefrontal cortex: pharmacological differentiation using microiontophoretic techniques, Life Sci. 19: 1783–1792.PubMedGoogle Scholar
  26. Bunney, B. S., Aghajanian, G. K., and Roth, R. H., 1973a, Comparison of effects of l- dopa, amphetamine and apomorphine on firing rate of rat dopaminergic neurons, Nature New Biol 245: 123–125.PubMedGoogle Scholar
  27. Bunney, B. S., Walters, J. R., Roth, R. H., and Aghajanian, G. K., 19736, Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity, J. Pharmacol Exp. Ther 185: 560–571.Google Scholar
  28. Burkard, W. P., Pieri, L., and Haefely, W., 1976, In vivo changes of guanosine 3’,5’-cyclic phosphate in rat cerebellum by dopaminergic mechanisms,J. Neurochem 27: 297–298.PubMedGoogle Scholar
  29. Butterworth, R. F., Poignant, J.-C., and Barbeau, A., 1975, Apomorphine and piribedil in rats: biochemical and pharmacologic studies, Adv. Neurol 9: 307–326.PubMedGoogle Scholar
  30. Casagrande, V. A., Harting, J. K., Hall, W. C., and Diamond, I. T., 1972, Superior colliculus of the tree shrew: a structural and functional subdivision into superficial and deep layers, Science 177: 444–447.PubMedGoogle Scholar
  31. Cedarbaum, J. M., and Aghajanian, G. K., 1976, Noradrenergic neurons of the locus coeruleus: inhibition by epinephrine and activation of the a-antagonist piperoxane, Brain Res. 112: 413–419.PubMedGoogle Scholar
  32. Chase, T. N., and Murphy, D. L., 1973, Serotonin and central nervous system function, Annu. Rev. Pharmacol 13: 181–197.PubMedGoogle Scholar
  33. Cheney, D. L., Zsilla, G., and Costa, E., 1977, Acetylcholine turnover rate in N. accumbens, N. caudatus, globus pallidus, and substantia nigra: action of cataleptogenic and nonca- taleptogenic antipsychotics, Adv. Biochem. Psychopharmacol 16: 179–186.PubMedGoogle Scholar
  34. Cheramy, A., Leviel, V., and Glowinski, J., 1981, Dendritic release of dopamine in the substantia nigra, Nature (London) 289:537–542.Google Scholar
  35. Collins, R. C., 1978a, Kindling of neuroanatomic pathways during recurrent focal penicillin seizures, Brain Res. 150: 503–517.PubMedGoogle Scholar
  36. Collins, R. C., 1978b, Use of cortical circuits during focal penicillin seizures: an autoradiographic study with [14C]-deoxyglucose, Brain Res. 150: 487–501.PubMedGoogle Scholar
  37. Collins, R. C., Kennedy, C., Sokoloff, L., and Plum, F., 1976, Metabolic anatomy of focal motor seizures, Arch. Neurol 33: 536–542.PubMedGoogle Scholar
  38. Collins, R. C., McLean, M., and Olney, J., 1980, Cerebral metabolic response to systemic kainic acid: 14C-deoxyglucose studies, Life Sci. 27: 855–862.PubMedGoogle Scholar
  39. Cools, A. R., 1979, GABA and thalamo-striatal control of apomorphine-like effects, in: GABA Neurotransmitters ( P. Krogsgaard-Larsen, J. Scheel-Kriiger, and H. Kofod, eds.), pp. 501–517, Munksgaard, Copenhagen.Google Scholar
  40. Costentin, J., Protais, P., and Schwartz, J. C., 1975, Rapid and dissociated changes in sensitivities of different dopamine receptors in mouse brain, Nature (London) 257: 405–407.Google Scholar
  41. Cox, B. M., Opheim, K. E., Teschemaker, H., and Goldstein, A., 1975, A peptide-like substance from pituitary that acts like morphine. 2. Purification and properties, Life Sci. 16: 1772–1782.Google Scholar
  42. Coyle, J. T., Biziere, K., Campochiaro, P., Schwarcz, R., and Zaczek, R., 1979, Kainic acid-induced lesion of the striatum as an animal model of Huntington’s Chorea, in: GABA Neurotransmitters ( P. Krogsgaard-Larsen, J. Scheel-Kriiger, and H. Kofod, eds.), pp. 419–431, Munksgaard, Copenhagen.Google Scholar
  43. Crane, P. D., Braun, L. D., Cornford, E. M., Cremer, J. E., Glass, J. M., and Oldendorf, W. H., 1978, Dose-dependent reduction of glucose utilization by pentobarbital in rat brain, Stroke 9: 12–18.PubMedGoogle Scholar
  44. Crane, P. D., Braun, L. D., Cornford, E. M., Nyerges, A. M., and Oldendorf, W. H., 1980, Cerebral cortical glucose utilization in the conscious rat: evidence for a circadian rhythm, J Neurochem. 34: 1700–1706.PubMedGoogle Scholar
  45. Creese, I., 1982, Dopamine Receptors, in: Handbook of Psychopharmacology (L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds.) Vol. 16, in press, Plenum Press, New York.Google Scholar
  46. Cremer, J. E., Cunningham, V. J., Ray, D. E., and Sarna, G. S., 1980, Regional changes in brain glucose utilization in rats given a pyrethroid insecticide, Brain Res. 194: 278–282.PubMedGoogle Scholar
  47. Crosby, G., Tannenbaum, B. A., and Sokoloff, L., 1981, Ketamine alters regional glucose utilization in rat brain, Anesthesiol. 53: S6.Google Scholar
  48. de Kloet, R., and de Wied, D., 1980, The brain as target tissue for hormones of pituitary origin: behavioural and biochemical studies, Frontiers Neuroendocrinol. 6: 157–201.Google Scholar
  49. Delanoy, R. L., and Dunn, A. J., 1978, Mouse brain deoxyglucose uptake after footshock, ACTH analogs, α-MSH, corticosterone, or lysine vasopressin, Pharmacol. Biochem. Behav 9: 21–26.PubMedGoogle Scholar
  50. Delgado, J. M. R., and Hanai, T., 1966, Intracerebral temperatures in free-moving cats, Am. J. Physiol 211 (3): 755–769.PubMedGoogle Scholar
  51. Des Rosiers, M. H., and Descarries, L., 1978, Adaptation de la méthode au désoxyglucose à l’échelle cellulaire: préparation histologique du systeme nerveux central en vue de la radioautographie à haute résolution, C.R. Acad. Sci. Paris 287: 153–155.Google Scholar
  52. Des Rosiers, M. H., Kennedy, C., Sakurada, O., Shinohara, M., and Sokoloff, L., 1978a, Effects of hypercapnia on cerebral oxygen and glucose consumption in the conscious rat, Stroke 9: 98.Google Scholar
  53. Des Rosiers, M. H., Sakurada, O., Jehle, J., Shinohara, M., Kennedy, C., and Sokoloff, L., 1978b, Functional plasticity in the immature striate cortex of the monkey shown by the [14C]deoxyglucose method, Science 220: 447–449.Google Scholar
  54. de Wied, D., and Gispen, W. H., 1977, Behavioral effects of peptides, in: Peptides in Neurobiology ( H. Gainer, ed.), 397–448, Plenum Press, New York.Google Scholar
  55. de Wied, D., Witter, A., and Greven, H. M., 1975, Behaviorally active ACTH analogs, Biochem. Pharmacol 24: 1463–1468.PubMedGoogle Scholar
  56. DiChiara, G., Porceddu, M. L., Morelli, M., Mulas, M. L., and Gessa, G. L., 1979, Evidence for a GABAergic projection from the substantia nigra to the ventromedial thalamus and to the superior colliculus of the rat, Brain Res. 176: 273–284.Google Scholar
  57. Dickenson, A. H., 1977, Specific responses of rat raphé neurones to skin temperature, J. Physiol 273: 277–293.PubMedGoogle Scholar
  58. Divac, I., and Diemer, N. H., 1980. Prefrontal system in the rat visualized by means of labeled deoxyglucose-further evidence for functional heterogeneity of the neostriatum, J. Comp. Neurol 190: 1–13.PubMedGoogle Scholar
  59. Doherty, J. D., Simonovic, M., So, R., and Meltzer, H. Y., 1980, The effect of phencyclidine on dopamine synthesis and metabolism in rat striatum, Eur. J. Pharmacol 65: 139–149.Google Scholar
  60. Domesick, V. B., 1969, Projections from the cingulate cortex in the rat, Brain Res. 12: 296–320.PubMedGoogle Scholar
  61. Dow-Edwards, D., Dam, M., Peterson, J. M., Rapoport, S. I., and London, E. D., 1981, Effect of oxotremorine on local cerebral glucose utilization in motor system regions of the rat brain, Brain Res. 226: 281–289.PubMedGoogle Scholar
  62. Dowling, J. E., and Ehinger, B., 1978, Synaptic organization of the dopaminergic neurons in the rabbit retina, J. Comp. Neurol 180: 203–220.PubMedGoogle Scholar
  63. Drew, G. M., 1976, Effects of a-adrenoreceptor agonists and antagonists on pre- and postsynaptically located α-adrenoreceptors, Eur. J. Pharmacol 36: 313–320.PubMedGoogle Scholar
  64. Dudley, R. E., Nelson, S. R., and Samson, F., 1982, Influence of chloralose on brain regional glucose utilization, Brain Res. 233: 173–180.PubMedGoogle Scholar
  65. Dunn, A. J., and Gispen, W. H., 1977, How ACTH acts on the brain, Biobehav. Res 1: 15–23.Google Scholar
  66. Ehinger, B., and Falck, B., 1969, Adrenergic retinal neurons of some New World monkeys, Z. Zellforsch 97: 285–297.PubMedGoogle Scholar
  67. Emson, P. C., and Lindvall, O., 1979, Distribution of putative neurotransmitters in the neocortex, Neuroscience 4: 1–30.PubMedGoogle Scholar
  68. Estler, C.-J., and Ammon, H. P. T., 1967, The influence of propranolol on the met- amphetamine-induced changes of cerebral function and metabolism, J. Neurochem 14: 799–805.Google Scholar
  69. Fielding, S., and Lal, H., 1978, Behavioural Actions of Neuroleptics, in: “Handbook of Psychopharmacology” ( L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds.), Vol. 10, pp. 91–128, Plenum Press, New York.Google Scholar
  70. Fields, J. Z., Reisine, T. D., and Yamamura, H. I., 1977, Biochemical demonstration of dopaminergic receptors in rat and human brain using [3H]spiroperidol, Brain Res. 136: 578–584.PubMedGoogle Scholar
  71. Finnegan, K. T., Kanner, M. I., and Meltzer, H. Y., 1976, Phencyclidine-induced rotational behavior in rats with nigrostriatal lesions and its modulation by dopaminergic and cholinergic agents, Pharmacol. Biochem. Behav 5: 651–660.PubMedGoogle Scholar
  72. Fonnum, F., Gottesfeld, Z., and Grofova, I., 1978, Distribution of glutamate decarboxylase, choline acetyltransferase, and aromatic amino acid decarboxylase in the basal ganglia of normal and operated rats. Evidence for striatopallidal, striatoentopeduncular, and striatonigral GABAergic fibers, Brain Res. 143: 125–138.PubMedGoogle Scholar
  73. Fox, M., and Williams, T. D., 1970, The caudate nucleus-cerebellar pathways: an electrophysiological study of their route through the midbrain, Brain Res. 20: 140–144.PubMedGoogle Scholar
  74. Fuxe, K., and Sjoqvist, F., 1972, Hypothermic effect of apomorphine in the mouse, J. Pham. Pharmacol 24: 702–705.Google Scholar
  75. Gabriel, M., Foster, K., and Orona, E., 1980, Interation of laminae of the cingulate cortex with the anteroventral thalamus during behavioral learning, Science 208: 1050–1052.PubMedGoogle Scholar
  76. Gallager, D. W., Pert, A., and Bunney, W. E., Jr., 1978, Haloperidol-induced presynaptic dopamine supersensitivity is blocked by chronic lithium, Nature (London) 273: 309–312Google Scholar
  77. Gibson, G. E., Jope, R., and Blass, J. P., 1975, Decreased synthesis of acetylcholine accompanying impaired oxidation of pyruvic acid in rat brain minces, Biochem. J 148: 17–23.PubMedGoogle Scholar
  78. Ginsberg, M. D., and Reivich, M., 1979, Use of the 2-deoxyglucose method of local cerebral glucose utilization in the abnormal brain: evaluation of the lumped constant during ischemia, Acta Neurol. Scand. 60(Suppl. 72): 226–227.Google Scholar
  79. Gjedde, A., and Crone, C., 1975, Induction processes in blood-brain transfer of ketone bodies during starvation, Am. J. Physiol 229: 1165–1169.PubMedGoogle Scholar
  80. Goldstein, G. W., Wolinsky, J. S., Csejtey, J., and Diamond, I., 1975, Isolation of metabolically active capillaries from rat brain, J. Neurochem 25: 715–717.PubMedGoogle Scholar
  81. Goochee, C., Rasband, W., and Sokoloff, L., 1980, Computerized densitometry and color coding of [14C]-deoxyglucose autoradiographs, Ann. Neurol 7: 359–370.PubMedGoogle Scholar
  82. Grome, J., Kelly, P., McCulloch, J., and Pickard, J. D., 1980, Effect of indomethacin on local cerebral glucose utilization, J. Physiol 303: 69 P.Google Scholar
  83. Grome, J. J., and McCulloch, J., 1981a, The effects of chloral hydrate anaesthesia on the metabolic response in the substantia nigra to apomorphine, Brain Res. 214: 223–228.Google Scholar
  84. Grome, J. J., and McCulloch, J., 1981b, The effect of chloral hydrate anaesthesia on the cerebral metabolic response to apomorphine administration, Eur. Neurol 20: 176–179.PubMedGoogle Scholar
  85. Haggendal, J., and Malmfors, T., 1965, Identification and cellular localization of the catecholamines in the retina and choroid of the rabbit, Acta Physiol. Scand 64: 58–66.Google Scholar
  86. Hand, P. J., Greenberg, J. H., Miselis, R. R., Weller, W. L., and Reivich, M., 1978, A normal and altered cortical column: a quantitative and qualitative 14C-2-deoxyglucose (2DG) mapping study, Neurosci. Abstr 4: 553.Google Scholar
  87. Hattori, T., Singh, V. K., McGeer, E. G., and McGeer, P. L., 1976, Immunohistochemical localization of choline acetyltransferase containing neostriatal neurons and their relationship with dopaminergic synapses, Brain Res. 102: 164–173.PubMedGoogle Scholar
  88. Hawkins, R. A., and Biebuyck, J. F., 1979, Ketone bodies are selectively used by individual brain regions, Science 205: 325–327.PubMedGoogle Scholar
  89. Hawkins, R., Hass, W. K., and Ransohoff, J., 1979, Measurement of regional brain glucose utilization in vivo using [2-14C]glucose, Stroke 10: 690–703.PubMedGoogle Scholar
  90. Hawkins, R. A., and Miller, A. L., 1978, Loss of radioactive 2-deoxy-d-glucose-6-phosphate from brains of conscious rats: implications for quantitative autoradiographic determination of regional glucose utilization, Neuroscience 3: 251–258.PubMedGoogle Scholar
  91. Hawkins, R. A., Williamson, D. H., and Krebs, A. H., 1971, Ketone-body utilization by adult and suckling rat brain in vivo, Biochem. J. 122: 13 - 18.Google Scholar
  92. Hawkins, R. A., Miller, A. L., Cremer, J. E., and Veech, R. L., 1974, Measurement of the rate of glucose utilization by rat brain in vivo, J. Neurochem. 23: 917–923.Google Scholar
  93. Heal, D. J., and Green, A. R., 1979, Administration of thyrotropin releasing hormone (TRH) to rats releases dopamine in n. accumbens but not in n. caudatus, Neuropharmacology 18: 23 - 31.PubMedGoogle Scholar
  94. Herkenham, M., 1981, Anesthetics and the habenulointerpeduncular system: selective sparing of metabolic activity, Brain Res. 210: 461–466.PubMedGoogle Scholar
  95. Herkenham, M., and Nauta, W. J. H., 1977, Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber-of-passage problem, J. Comp. Neurol 173: 123–146.PubMedGoogle Scholar
  96. Herkenham, M., and Nauta, W. J. H., 1979, Efferent connections of the habenular nuclei in the rat, J. Comp. Neurol 187: 19–48.PubMedGoogle Scholar
  97. Hopkins, D. A., and Niessen, L. W., 1976, Substantia nigra projections to the reticular formation, superior colliculus, and central gray in the rat, cat, and monkey, Neurosci. Lett 2: 253–259.PubMedGoogle Scholar
  98. Horn, A. S., Cuello, A. C., and Miller, R. J., 1974, Dopamine in the mesolimbic system of the rat brain: endogenous levels and the effects of drugs on the uptake mechanism and stimulation of adenylate cyclase activity, J. Neurochem 22: 265–270.PubMedGoogle Scholar
  99. Hostetler, K. Y., and Landau, B. R., 1967, Estimation of pentose phosphate contribution to glucose metabolism in tissue in vivo, Biochemistry 6: 2961–2977.Google Scholar
  100. Hubel, D. H., and Wiesel, T. N., 1972, Laminar and columnar distribution of geniculocortical fibers in the macaque monkey, J. Comp. Neurol 146: 421–450.PubMedGoogle Scholar
  101. Hubel, D. H., Wiesel, T. N., and Lam, D. M. K., 1974, Autoradiographic demonstration of ocular dominance columns in the monkey striate cortex by means of transneuronal transport, Brain Res. 79: 273–279.PubMedGoogle Scholar
  102. Hubel, D. H., Wiesel, T. N., and Stryker, M. P., 1978, Anatomical demonstration of orientation columns in macaque monkey,/. Comp. Neurol 177: 361 - 380.Google Scholar
  103. Hughes, J., Smith, T. W., Kosterlitz, H. W., Fothergill, L. A., Morgan, B. A., and Morris, H. R., 1975, Identification of two related pentapeptides from the brain with potent opiate agonist activity, Nature (London) 258: 577–579.Google Scholar
  104. Hunt, S. P., and Schmidt, J., 1978, Some observations of the binding patterns of α- bungarotoxin in the central nervous system of the rat, Brain Res. 157: 213–232.PubMedGoogle Scholar
  105. Ingvar, M., Abdul-Rahman, A., and Siesjo, B. K., 1980, Local cerebral glucose consumption in the artificially ventilated rat: influence of nitrous oxide analgesia and of phenobarbital anesthesia, Acta Physiol. Scand 109: 177–185.PubMedGoogle Scholar
  106. Isaacson, R. L., and Pribram, K. H., 1975, The Hippocampus, Vols. 1 and 2, Plenum Press, New York.Google Scholar
  107. Jackson, D. M., Andén, N.-E., and Dahlstrom, A., 1975, A functional effect of dopamine in the nucleus accumbens and in some other dopamine-rich parts of the rat brain, Psychopharmacologia (Berlin) 45: 139–149.Google Scholar
  108. Jacquet, Y. F., and Lajtha, A., 1974, Paradoxical effects after microinjection of morphine in the periaqueductal gray matter of the rat, Science 185: 1055–1057.PubMedGoogle Scholar
  109. Jacquet, Y. F., and Marks, N., 1976, The C-fragment of P-Iipotropin: an endogenous neuroleptic or antipsychotogen? Science 194: 632–635.PubMedGoogle Scholar
  110. Janssen, P. A. J., and van Bever, W. F. M., 1978, Structure-activity relationships of the butyrophenones and diphenylbutylpiperidines, in: Handbook of Psychopharmacology (L. L.Google Scholar
  111. Iversen, S. D. Iversen, and S. H. Snyder, eds.), Vol. 10, pp. 1–35, Plenum Press, New York.Google Scholar
  112. Johnston, G. A. R., 1978, Neuropharmacology of amino acid inhibitory transmitters, Annu. Rev. Pharmacol. Toxicol 18: 269–289.PubMedGoogle Scholar
  113. Johnston, M. V., McKinney, M., and Coyle, J. T., 1979, Evidence for a cholinergic projection to neocrotex from neurons in basal forebrain, Proc. Natl. Acad. Sci. U.S.A 76: 5392–5396.PubMedGoogle Scholar
  114. Kadekaro, M., Savaki, H., and Sokoloff, L., 1980, Metabolic mapping of neural pathways involved in gastrosecretory response to insulin hypoglycaemia in the rat, J. Physiol 300: 393–407.PubMedGoogle Scholar
  115. Karobath, M., Placheta, P., and Lippitsch, M., 1979, Is stimulation of benzodiazepine receptor binding mediated by a novel GABA receptor? Nature (London) 278: 748–749.Google Scholar
  116. Kebabian, J. W., 1978, A sensitive enzymatic-radioisotopic assay for apomorphine, J. Neurochem 30: 1143–1148.PubMedGoogle Scholar
  117. Kebabian, J. W., and Saavedra, J. M., 1976, Dopamine-sensitive adenylate cyclase occurs in a region of substantia nigra containing dopaminergic dendrites, Science 193: 683–685.PubMedGoogle Scholar
  118. Kebabian, J. W., Petzold, G. L., and Greengard, P., 1972, Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the “dopamine receptor,” Proc. Natl. Acad. Sci. U.S.A 69: 2145–2149.PubMedGoogle Scholar
  119. Kehr, W., Carlsson, A., and Lindqvist, M., 1975, Biochemical aspects of dopamine agonists, Adv. Neurol. 9: 185–195.Google Scholar
  120. Kelly, P. A. T., and McCulloch, J., 1981a, Heterogeneous depression of glucose utilization in the caudate nucleus by GABA agonists, Brain Res. 209: 458–463.Google Scholar
  121. Kelly, P. A. T., and McCulloch, J., 1981b, Differences in the response of rat superior colliculus to muscimol and THIP, Br. J. Pharmacol 74: 815P–816 P.Google Scholar
  122. Kelly, P. A. T., and McCulloch, J., 1981c, Errors associated with modifications of the quantitative 2-deoxyglucose technique, J. CBF Met. l(Suppl. 1 ): S60–S61.Google Scholar
  123. Kelly, P. A. T., and McCulloch, J., 1982a, The effects of the putative GABAergic agonists, muscimol and THIP, upon local cerebral glucose utilizations. J. Neurochem 39: 613–624.PubMedGoogle Scholar
  124. Kelly, P. A. T. and McCulloch, J., 1982b, GABAergic and dopaminergic influence on glucose utilization in the extrapyramidal system, Br. J. Pharmacol 76: 290 P.Google Scholar
  125. Kelly, P. A. T., Graham, D. I., and McCulloch, J., 1982, Specific alterations in local cerebral glucose utilization following striatal lesions, Brain Res. 233: 157–172.PubMedGoogle Scholar
  126. Kemp, J. M., and Powell, T. P. S., 1971, The connections of the striatum and globus pallidus: synthesis and speculation, Philos. Trans. R. Soc. London B 262: 441–457.Google Scholar
  127. Kennedy, C., Des Rosiers, M. H., Jehle, J. W., Reivich, M., Sharp, F., and Sokoloff, L., 1975, Mapping of functional neural pathways by autoradiographic survey of local metabolic rate with [14C]deoxyglucose, Science 187: 850–853.PubMedGoogle Scholar
  128. Kennedy, C., Des Rosiers, M. H., Sakurada, O., Shinohara, M., Reivich, M., Jehle, J. W., and Sokoloff, L., 1976, Metabolic mapping of the primary visual system of the monkey by means of the autoradiographic [14C]deoxyglucose technique, Proc. Natl. Acad. Sci. U.S.A 73: 4230–4234.PubMedGoogle Scholar
  129. Kennedy, C., Sakurada, O., Shinohara, M., Jehle, J., and Sokoloff, L., 1978, Local cerebral glucose utilization in the normal conscious macaque monkey, Ann. Neurol 4: 293–301.PubMedGoogle Scholar
  130. Kimura, H., McGeer, E. G., and McGeer, P. L., 1980, Metabolic alterations in an animal model of Huntington’s disease using the 14C-deoxyglucose method, J. Neural Transm. Suppl 16: 103–109.PubMedGoogle Scholar
  131. Klemm, N., Murrin, L. C., and Kuhar, M. J., 1979, Neuroleptic and dopamine receptors: autoradiographic localization of [3H]-spiperone in rat brain, Brain Res. 169: 1–9.PubMedGoogle Scholar
  132. Kliot, M., and Poletti, C. E., 1979, Hippocampal afterdischarges: differential spread of activity shown by the [14C]deoxyglucose technique, Science 204: 641–643.PubMedGoogle Scholar
  133. Kozlowski, M. R., and Marshall, J. F., 1980, Plasticity of [14C]2-deoxy-d-glucose incorporation into neostriatum and related structures in response to dopamine neuron damage and apomorphine replacement, Brain Res. 197: 167–183.PubMedGoogle Scholar
  134. Krnjevic, K., 1975, Electrophysiology of dopamine receptors, Adv. Neurol 9: 13–24.PubMedGoogle Scholar
  135. Krogsgaard-Larsen, P., Hjeds, H., Curtis, D. R., Lodge, D., and Johnston, G. A. R., 1979a, Dihydromuscimol, thiomuscimol, and related heterocyclic compounds as GABA analogues, J. Neurochem 32: 1717–1724.PubMedGoogle Scholar
  136. Krogsgaard-Larsen, P., Scheel-Krüger, J., and Kofod, H., 1979b, GABA Neurotransmitters, Munksgaard, Copenhagen.Google Scholar
  137. Kuhar, M. J., 1975, Cholinergic neurons: Septo-hippocampal relationships, in: The Hippocampus ( R. L. Isaacson and K. H. Pribram, eds.), Vol. 1, pp. 269–283, Plenum Press, New York.Google Scholar
  138. Kuschinsky, W., Suda, S., and Sokoloff, L., 1981, Local cerebral glucose utilization and blood flow during metabolic acidosis, Am. J. Physiol 241: H772–H777.PubMedGoogle Scholar
  139. Langer, S. Z., 1977, Presynaptic receptors and their role in the regulation of transmitter release, Br. J. Pharmacol 60: 481–497.PubMedGoogle Scholar
  140. Larsen, J. K., and Divac, I., 1978, Selective ablations within the prefrontal cortex of the rat and performance of delayed alternation, Physiol. Psychol 6: 15–17.Google Scholar
  141. Leonard, B. E., and Tonge, S. R., 1969, The effects of some hallucinogenic drugs upon the metabolism of noradrenaline, Life Sci. 8: 815–825.PubMedGoogle Scholar
  142. Leonard, B. E., and Tonge, S. R., 1971, Variation in hydroxytryptamine metabolism in the rat: effects on the neurochemical response to phencyclidine, J. Pharm. Pharmacol 23: 711–712.PubMedGoogle Scholar
  143. Levine, M. S., Hull, C. D., Buchwald, N. A., Garcia-Rill, E., Heller, A., and Erinoff, L., 1977, The spontaneous firing patterns of forebrain neurons. III. Prevention of induced asymmetries in caudate neuronal firing rates by unilateral thalamic lesions, Brain Res. 131: 215–225.PubMedGoogle Scholar
  144. Lewis, P. R., and Shute, C. C. D., 1978, Cholinergic Pathways in CNS, in: Handbook of Psychopharmacology ( L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds.), Vol. 9, pp. 315–355, Plenum Press, New York.Google Scholar
  145. Lindvall, O., and Bjorklund, A., 1978, Organization of catecholamine neurons in the rat central nervous system, in Handbook of Psychopharmacology ( L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds.), Vol. 9, pp. 139–231, Plenum Press, New York.Google Scholar
  146. Lippe, W. R., Steward, O., and Rubel, E. W., 1980, The effect of unilateral basilar papilla removal upon nuclei laminaris and magnocellularis of the chick examined with [3H]2- deoxy-d-glucose autoradiography, Brain Res. 196: 43–58.PubMedGoogle Scholar
  147. Lodge, D., and Curtis, D. R., 1978, Time course of GABA and glycine actions on cat spinal neurones: effect of pentobarbitone, Neurosci. Lett 8: 125–129.Google Scholar
  148. Lowry, O. H., Passonneau, J. V., Hasselberger, F. X., and Schulz, D. W., 1964, Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain, J. Biol. Chem 239: 18–30.PubMedGoogle Scholar
  149. Lund, R. D., 1964, Terminal distribution in the superior colliculus of fibers originating in the visual cortex, Nature (London) 204: 1283–1285.Google Scholar
  150. Lund, R. D., 1965, Uncrossed visual pathways of hooded and albino rats, Science 149: 1506–1507.PubMedGoogle Scholar
  151. Lund, J. P., Miller, J. J., and Courville, J., 1981, 3H-2-deoxy-D-glucose capture in the hippocampus and dentate gyrus of ketamine-anesthetized rat, Neurosci. Lett 24: 149–153.Google Scholar
  152. Maggi, A., and Enna, S. J., 1979, Characteristics of muscimol accumulation in mouse brain after systemic administration, Neuropharmacology 18: 361–366.PubMedGoogle Scholar
  153. Maker, H. S., Clarke, D. D., and Lajtha, A. L., 1972, Intermediary metabolism of carbohydrates and amino acids, in: Basic Neurochemistry ( G. J. Siegel, R. W. Albers, R. Katzman, and B. W. Agranoff, eds.), pp. 279–307, Little, Brown and Company, Waltham, Massachusetts.Google Scholar
  154. Marco, E., Mao, C. C., Cheney, D. L., Revuelta, A., and Costa, E., 1976, The effects of antipsychotics on the turnover rate of GABA and acetylcholine in rat brain nuclei, Nature (London) 264: 363–365.Google Scholar
  155. Marco, E., Mao, C. C., Revuelta, A., Peralta, E., and Costa, E., 1978, Turnover rates of 7-aminobutyric acid in substantia nigra, n. caudatus, globus pallidus, and n. accumbens of rats injected with cataleptogenic and noncataleptogenic antipsychotics, Neuropharmacology 17: 589–596.PubMedGoogle Scholar
  156. Mata, M., Fink, D. J., Gainer, H., Smith, C. B., Davidsen, L., Savaki, H., Schwartz, W. J., and Sokoloff, L., 1980, Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity, J. Neurochem 34: 213–215.PubMedGoogle Scholar
  157. McCulloch, J., and Kelly, P. A. T., 1981, Alterations in local cerebral glucose utilization in specific thalamic nuclei following apomorphine, J. CBF Met 1: 133–136.Google Scholar
  158. McCulloch, J., Savaki, H. E., McCulloch, M. C., and Sokoloff, L., 1979, Specific distribution of metabolic alterations in cerebral cortex following apomorphine administration, Nature (London) 282: 303–305.Google Scholar
  159. McCulloch, J., Savaki, H. E., McCulloch, M. C., and Sokoloff, L., 1980a, Retina- dependent activation by apomorphine of metabolic activity in the superficial layer of the superior colliculus, Science 207: 313–315.PubMedGoogle Scholar
  160. McCulloch, J., Savaki, H. E., and Sokoloff, L., 19806, Influence of dopaminergic systems on the lateral habenular nucleus of the rat, Brain Res. 194: 117–124.Google Scholar
  161. McCulloch, J., Kelly, P. A. T., and van Delft, A. M. L., 1982a, Neuroanatomical basis for the action of a behaviourally active ACTH4_g analogue, Eur. J. Pharmacol 78: 151–158.Google Scholar
  162. McCulloch, J., Kelly, P. A. T., Grome, J. J., and Pickard, J. D., 19826, Indomethacin and the coupling of local cerebral blood flow and local cerebral glucose utilization, Am. J. Physiol in press.Google Scholar
  163. McCulloch, J., Savaki, H. E., Jehle, J., and Sokoloff, L., 1982c, Local cerebral glucose utilization in hypothermic and hyperthermic rats, J. Neurochem 39: 255–258.PubMedGoogle Scholar
  164. McCulloch, J., Savaki, H. E., McCulloch, M. C., Jehle, J., and Sokoloff, L., 1982d, The distribution of alterations in energy metabolism in the rat brain produced by apomorphine, Brain Res, 243: 67–80.PubMedGoogle Scholar
  165. McCulloch, J., Savaki, H. E., and Sokoloff, L., 1982d, Distribution of effects of haloperidol on energy metabolism in the rat brain, Brain Res, 243: 81–90.PubMedGoogle Scholar
  166. McGeer, P. L., and McGeer, E. G., 1975, Evidence for glutamic acid decarboxylase containing interneurons in the neostriatum, Brain Res. 91: 331–335.PubMedGoogle Scholar
  167. Meibach, R. C., Glick, S. D., Cox, R., and Maayani, S., 1979, Localisation of phencyclidine- induced changes in brain energy metabolism, Nature (London) 282: 625–626.Google Scholar
  168. Meibach, R. C., Glick, S. D., Ross, D. A., Cox, R. D., and Maayani, S., 1980, Intraperitoneal administration and other modifications of the 2-deoxy-d-glucose technique, Brain Res. 195: 167–176.PubMedGoogle Scholar
  169. Miller, A. L., Hawkins, R. A., and Veech, R. L., 1975, Decreased rate of glucose utilization by rat brain in vivo after exposure to atmospheres containing high concentrations of CO2J. Neurochem. 25: 553–558.Google Scholar
  170. Miller, R. J., Horn, A. S., and Iversen, L. L., 1974, The action of neuroleptic drugs on dopamine-stimulated adenosine cyclic 3’,5’-monophosphate production in rat neostriatum and limbic forebrain, Mol. Pharmacol 10: 759–766.Google Scholar
  171. Miyamoto, M., and Nagawa, Y., 1977, Mesolimbic involvement in the locomotor stimulant action of thyrotropin-releasing hormone (TRH) in rats, Eur. J. Pharmacol 44: 143–152.PubMedGoogle Scholar
  172. Miyaoka, M., Shinohara, M., Batipps, M., Pettigrew, K. D., Kennedy, C., and Sokoloff, L., 1979, The relationship between the intensity of the stimulus and the metabolic response in the visual system of the rat, Acta Neurol. Scand 60 (Suppl. 72): 16–17.Google Scholar
  173. Moore, R. Y., and Bloom, F. E., 1978, Central catecholamine neuron systems: anatomy and physiology of the dopamine systems, Annu. Rev. Neurosci 1: 129–169.PubMedGoogle Scholar
  174. Moore, R. Y., and Bloom, F. E., 1979, Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems, Annu. Rev. Neurosci 2: 113–168.PubMedGoogle Scholar
  175. Murrin, L. C., and Kuhar, M. J., 1979, Dopamine receptors in the rat frontal cortex: an autoradiographic study, Brain Res. 177: 279–285.PubMedGoogle Scholar
  176. Nagai, Y., Narumi, S., Nagawa, Y., Sakurada, O., Ueno, H., and Ishii, S., 1980, Effect of thyrotropin-releasing hormone (TRH) on local cerebral glucose utilization, by the autoradiographic 2-deoxy[14C]-glucose method, in conscious and pentobarbitalized rats, J. Neurochem 35: 963–971.PubMedGoogle Scholar
  177. Nahorski, S. R., and Rogers, K. J., 1973, In vivo effects of amphetamine on metabolites and metabolic rate in brain, J. Neurochem 21: 679–686.Google Scholar
  178. Nahorski, S. R., and Rogers, K. J., 1975, The role of catecholamines in the action of amphetamine and l-dopa on cerebral energy metabolism, Neuropharmacology 14: 283–290.PubMedGoogle Scholar
  179. Nauta, W. J. H., and Domesick, V., 1979, The anatomy of the extrapyramidal system, in: Dopaminergic Ergot Derivatives and Motor Function ( K. Fuxe and D. Calne, eds.), pp. 3–22, Pergamon Press, New York.Google Scholar
  180. Nelson, S. R., Doull, J., Tockman, B. A., Cristiano, P. J., and Samson, F. E., 1978, Regional brain metabolism changes induced by acetylcholinesterase inhibitors, Brain Res. 157: 186–190.PubMedGoogle Scholar
  181. Nelson, S. R., Howard, R. B., Gross, B. S., and Samson, F. E., 1980, Ketamine induced changes in regional glucose utilization in the rat brain, Anaesthesiol. 52: 330–334.Google Scholar
  182. Oldendorf, W. H., 1971, Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection, Am. J. Physiol 221: 1629 - 1639.PubMedGoogle Scholar
  183. Palacios, J. M., Kuhar, M. J., Rapoport, S. I., and London, E. D., 1981, Increases and decreases in local cerebral glucose utilization in response to GABA agonists, Europ. J. Pharmacol 71: 333–336.Google Scholar
  184. Palkovits, M., 1973, Isolated removal of hypothalamic or other brain nuclei, Brain Res. 59: 449–450.PubMedGoogle Scholar
  185. Palkovits, M., and Zaborszky, L., 1977, Neuroanatomy of central cardiovascular control. Nucleus tractus solitarii: afferent and efferent neuronal connections in relation to the baroreceptor reflex arc, Prog. Brain Res 47: 9–34.PubMedGoogle Scholar
  186. Parent, A., and Butcher, L. L., 1976, Organization and morphologies of acetylcholinesterase containing neurons in the thalamus and hypothalamus of the rat, J. Comp. Neurol 170: 205–226.PubMedGoogle Scholar
  187. Pert, C. B., Kuhar, M. J., and Snyder, S. H., 1976, Opiate receptor: autoradiographic localization in rat brain, Proc. Natl. Acad. Sei. U.S.A 73: 3729–3733.Google Scholar
  188. Pert, A., Rosenblatt, J. E., Sivit, C., Pert, C. B., and Bunney, W. E., Jr., 1978, Long-term treatment with lithium prevents the development of dopamine receptor supersensitivity, Science 201: 171–173.PubMedGoogle Scholar
  189. Phillipson, O. T., and Horn, A. S., 1976, Substantia nigra of the rat contains a dopamine- sensitive adenylate cyclase, Nature (London) 261: 418–420.Google Scholar
  190. Pickard, J. D., and MacKenzie, E. T., 1973, Inhibition of prostaglandin synthesis and the response of baboon cerebral circulation of carbon dioxide, Nature New Biol. 245: 187–188.PubMedGoogle Scholar
  191. Powell, E. W., and Hines, G., 1975, Septohippocampal Interface, in: The Hippocampus ( R. L. Isaacson and K. H. Pribram, eds.), Vol. 1, pp. 41–59, Plenum Press, New York.Google Scholar
  192. Racagni, G., and Carenzi, A., 1976, The anterior amygdala dopamine-sensitive adenylate cyclase: point of action of antipsychotic drugs, Pharmacol. Res. Commun 8: 149–157.PubMedGoogle Scholar
  193. Ray, D. E., 1980, An EEG investigation of decamethrin-induced choreoathetosis in the rat, Exp. Brain Res 38: 221–227.PubMedGoogle Scholar
  194. Renaud, L. P., and Martin, J. B., 1975, Thyrotropin-releasing hormone (TRH): depressant action on central neuronal activity, Brain Res. 86: 150–154.PubMedGoogle Scholar
  195. Roberts, P. J., Woodruff, G. N., and Iversen, L. L., 1978, Dopamine, Adv. Biochem. Psychopharmacol 19: 1–408.Google Scholar
  196. Rogers, K. J., and Hutchins, D. A., 1972, Studies on the relation of chemical structure of glycogenolytic activity in the brain, Eur. J. Pharmacol 20: 97–103.PubMedGoogle Scholar
  197. Roth, R. H., and Nowycky, M. C., 1977, Dopaminergic neurons: effects elicited by γ- hydroxybutyrate are reversed by picrotoxin, Biochem. Pharmacol 26: 2079–2082.PubMedGoogle Scholar
  198. Rotter, A., Birdsall, N.J. M., Burgen, A. S. V., Field, P. M., Hulme, E. C., and Raisman, G., 1979a, Muscarinic receptors in the central nervous system of the rat. I. Technique for autoradiographic localization of the binding of [3H]-propylbenzilylcholine mustard and its distribution in the forebrain, Brain Res. Rev 1: 141–165.Google Scholar
  199. Rotter, A., Birdsall, N.J. M., Field, P. M., and Raisman, G., 19796, Muscarinic receptors in the central nervous system of the rat. II. Distribution of binding of [3H]-propylbenzilylcholine in the midbrain and hindbrain, Brain Res. Rev 1: 167–183.Google Scholar
  200. Rubin, E. H., and Ferrendelli, J. A., 1977, Distribution and regulation of cyclic nucleotide levels in cerebellum in vivo, J. Neurochem. 29: 43–51.Google Scholar
  201. M. N., 1974, Regulation of glucose and ketone-body metabolism in brain Ruderman, N. B., Ross, P. S., Berger, M., and Goodman,of anaesthetized rats, Biochem. J 138: 1–10.Google Scholar
  202. Ruffieux, A., and Schultz, W., 1980, Dopaminergic activation of reticulata neurones in the substantia nigra, Nature (London) 285: 240–241.Google Scholar
  203. Sagar, S. M., and Snodgrass, S. R., 1980, Effects of substantia nigra lesions on forebrain 2- deoxyglucose retention in the rat, Brain Res. 185: 335–348.PubMedGoogle Scholar
  204. Sakurada, O., Shinohara, M., Klee, W. A., Kennedy, C., and Sokoloff, L., 1976, Local cerebral glucose utilization following acute or chronic morphine administration and withdrawal, Neurosci. Abstr 2: 613.Google Scholar
  205. Sakurada, O., Sokoloff, L., and Jacquet, Y. F., 1978, Local cerebral glucose utilization following injection of (β-endorphin into periaqueductal gray matter in the rat, Brain Res. 153: 403–407.PubMedGoogle Scholar
  206. Sanberg, P. R., and Fibiger, H. C., 1979, Body weight, feeding and drinking behaviour in rats with kainic-induced lesions of striatal neurons—with a note on body weight symptomatology in Huntington’s Disease, Exp. Neurol 66: 444–466.PubMedGoogle Scholar
  207. Savaki, H. E., Kadekaro, M., Jehle, J., and Sokoloff, L., 1978, a- and P-adrenoreceptor blockers have opposite effects on energy metabolism on the central auditory system, Nature (London) 276: 521–523.Google Scholar
  208. Savaki, H. E., Davidsen, L., Smith, C., and Sokoloff, L., 1980, Measurement of free glucose turnover in brain, J. Neurochem 35: 495–502.PubMedGoogle Scholar
  209. Savaki, H. E., Kadekaro, M., McCulloch, J., and Sokoloff, L., 1982a, Central noradrenergic systems in the rat: a metabolic mapping with three α-blocking agents, Brain Res. 234: 65–79.Google Scholar
  210. Savaki, H. E., MacPherson, H., and McCulloch, J., 1982b, Alterations in local cerebral glucose utilization during haemorrhagic hypotension, Circ. Res 50: 633–644.PubMedGoogle Scholar
  211. Savaki, H. E., McCulloch, J., Kadekaro, M., and Sokoloff, L., 1982c, Influence of α- receptor blocking’agents upon metabolic activity in nuclei involved in central control of blood pressure, Brain Res. 233: 347–358.Google Scholar
  212. Scally, M. C., Ulus, I. H., Wurtman, R. J., and Pettibone, D. J., 1978, Regional distribution of neurotransmitter-synthesizing enzymes and substance P within the rat corpus striatum, Brain Res. 143: 556–560.PubMedGoogle Scholar
  213. Scheich, H., Bonke, B. A., Bonke, D., and Langner, G., 1979, Functional organization of some auditory nuclei in the guinea fowl demonstrated by the 2-deoxyglucose technique, Cell Tiss. Res 204: 17–27.Google Scholar
  214. Schlemmer, R. F., Jr., Jackson, J. A., Preston, K. L., Bederka, J. P., Jr., Garver, D. L., and Davis, J. M., 1978, Phencyclidine-induced stereotyped behavior in monkeys: antagonism by pimozide, Eur. J. Pharmacol 52: 379–384.PubMedGoogle Scholar
  215. Schuier, F., Orzi, F., Suda, S., Kennedy, C., and Sokoloff, L., 1981, The lumped constant for the 14C-deoxyglucose method in hyperglycervic rats, J. CBF Met. l(Suppl. 1 ): S63.Google Scholar
  216. Schwartz, W. J., 1978a, 6-Hydroxydopamine lesions of rat locus coeruleus alter brain glucose consumption, as measured by the 2-deoxy-d-[14C]-glucose tracer technique, Neurosci. Lett 7: 141–150.Google Scholar
  217. Schwartz, W. J., 1978b, A role for the dopaminergic nigrostriatal bundle in the pathogenesis of altered brain glucose consumption after lateral hypothalamic lesions. Evidence using the 14C-labeled deoxyglucose technique, Brain Res. 158: 129–147.PubMedGoogle Scholar
  218. Schwartz, W. J., and Gainer, H., 1977, Suprachiasmatic nucleus: use of 14C-labeled deoxyglucose uptake as a functional marker, Science 197: 1089–1091.PubMedGoogle Scholar
  219. Schwartz, W. J., Sharp, F. R., Gunn, R. H., and Evarts, E. V., 1976, Lesions of ascending dopaminergic pathways decrease forebrain glucose uptake, Nature (London) 261: 155–157.Google Scholar
  220. Schwartz, W. J., Smith, C. B., Davidsen, L., Savaki, H. E., Sokoloff, L., Mata, M., Fink, D. J., and Gainer, H., 1979, Metabolic mapping of functional activity in the hypothalamo- neurohypophyseal system of the rat, Science 205: 723–725.PubMedGoogle Scholar
  221. Schwartz, W. J., Davidsen, L. C., and Smith, C. B., 1980, In vivo metabolic activity of a putative circadian oscillator, the rat suprachiasmatic nucleus, J. Comp. Neurol 189: 157–167.Google Scholar
  222. Sejnowski, T. J., Reingold, S. C., Kelley, D. B., and Gelperin, A., 1980, Localization of [3H]-2-deoxyglucose in single molluscan neurones. Nature (London) 287: 449–451.Google Scholar
  223. Shapiro, H. M., Greenberg, J. H., Reivich, M., Shipko, E., van Horn, K., and Sokoloff, L., 1975, Local cerebral glucose utilization during anesthesia, in: Blood Flow and Metabolism in the Brain (M. Harper, B. Jennett, D. Miller, and J. Rowan, eds.), pp. 9. 42–43, Churchill, London.Google Scholar
  224. Shapiro, H. M., Greenberg, J. H., Reivich, M., Ashmead, G., and Sokoloff, L., 1978, Local cerebral glucose uptake in awake and halothane-anesthetized primates, Anesthesiology 48: 97–103.PubMedGoogle Scholar
  225. Sharp, F. R., 1976a, Relative cerebral glucose uptake of neuronal perikarya and neuropil determined with 2-deoxyglucose in resting and swimming rat, Brain Res. 110: 127–139.Google Scholar
  226. Sharp, F. R., 19766, Rotation-induced increases of glucose uptake in rat vestibular nuclei and vestibulocerebellum, Brain Res. 110: 141–151.Google Scholar
  227. Sharp, F. R., Kaver, J. S., and Shepherd, G. M., 1975, Local sites of activity-related glucose metabolism in rat olfactory bulb during olfactory stimulation, Brain Res. 98: 596–600.PubMedGoogle Scholar
  228. Siesjö, bo K., 1978, Brain Energy Metabolism, Wiley, New York.Google Scholar
  229. Siesjö, bo K., and Abdul-Rahman, A., 1979, A metabolic basis for the selective vulnerability of neurons in status epilepticus, Acta Physiol. Scand 106: 377–378.PubMedGoogle Scholar
  230. Siggins, G. R., 1978, Electrophysiological role of dopamine in striatum: excitatory or inhibitory? in: Psychopharmacology: A Generation of Progress ( M. A. Lipton, A. DiMascio, and K. F. Killam, eds.), pp. 143–157, Raven Press, New York.Google Scholar
  231. Simke, J. P., and Saelens, J. K., 1977, Evidence for a cholinergic fiber tract connecting the thalamus with the head of the striatum of the rat, Brain Res. 126: 487–495.PubMedGoogle Scholar
  232. Simon, H., Scatton, B., and Le Moal, M., 1980, Dopaminergic A10 neurones are involved in cognitive functions, Nature (London) 286: 150–151.Google Scholar
  233. Skeen, L. C., 1977, Odour-induced patterns of deoxyglucose consumption in the olfactory bulb of the tree shrew, Tupaia Glis, Brain Res. 124: 147–153.Google Scholar
  234. Skirboll, L. R., Grace, A. A., and Bunney, B. S., 1979, Dopamine auto- and postsynaptic receptors: electrophysiological evidence for differential sensitivity to dopamine agonists, Science 206: 80–82.PubMedGoogle Scholar
  235. Smith, R. C., Meltzer, H. Y., Arora, R. C., and Davis, J. M., 1977, Effects of phencyclidine on [3H]-catecholamine and [3H]-serotonin uptake in synaptosomal preparations from rat brain, Biochem. Pharmacol 26: 1435–1439.PubMedGoogle Scholar
  236. Snodgrass, S. R., 1978, Use of 3H-muscimol for GABA receptor studies, Nature (London) 273: 392–394.Google Scholar
  237. Sokoloff, L., 1973, Metabolism of ketone bodies by the brain, Annu. Rev. Med 23: 271–280.Google Scholar
  238. Sokoloff, L., 1977, Relation between physiological function and energy metabolism in the central nervous system, J. Neurochem 29: 13–26.PubMedGoogle Scholar
  239. Sokoloff, L., 1978, Mapping cerebral functional activity with radioactive deoxyglucose, Trends in Neurosci. 1:75–79.Google Scholar
  240. Sokoloff, L., 1979 The [14C]-deoxyglucose method: four years later, Acta Neurol. Scand. 60:(Suppl. 72):640–649.Google Scholar
  241. Sokoloff, L., 1981, Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose, J. CBF Met 1:7–36.Google Scholar
  242. Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O., and Shinohara, M., 1977, The [14C]-deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat, J. Neurochem 28:897–916.Google Scholar
  243. Sols, A., and Crane, R. K., 1954, Substrate specificity of brain hexokinase, J. Biol. Chem 210: 581–595.Google Scholar
  244. Spano, P. F., DiChiara, G., Tonon, G. C., and Trabucchi, M., 1976, A dopamine-stimulated adenylate cyclase in rat substantia nigra, J. Neurochem 27: 1565–1568.PubMedGoogle Scholar
  245. Speth, R. C., Chen, F. M., Lindstrom, J. M., Kobayashi, R. M., and Yamamura, H. I., 1977, Nicotinic cholinergic receptors in the rat brain identified by l25I-Naja naja siamensis α- toxin binding, Brain Res. 131: 350–355.PubMedGoogle Scholar
  246. Starke, K., 1977, Regulation of noradrenaline release by presynaptic receptor systems, Rev. Physiol. Biochem. Pharmacol 77:1–24.Google Scholar
  247. Steward, O., and Smith, L. K., 1980, Metabolic changes accompanying denervation and reinnervation of the dentate gyrus of the rat measured by [3H]-2-deoxyglucose autoradiography, Exp. Neurol 69:513–527.Google Scholar
  248. Stock, G., Magnausson, T., and Anden, N. E., 1973, Increase in brain dopamine after axotomy or treatment with 7-hydroxybutyric acid due to elimination of nerve impulse flow, Naunyn-Schmiedeberg’s Arch. Pharmacol 279: 89–92.PubMedGoogle Scholar
  249. Swanson, L. W., and Cowan, W. M., 1977, An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat, J. Comp. Neurol 172: 49–84.PubMedGoogle Scholar
  250. Tarsy, D., and Baldessarini, R. J., 1974, Behavioural supersensitivity to apomorphine following chronic treatment with drugs which interfere with the synaptic function of catecholamines, Neuropharmacology 13: 927–940.PubMedGoogle Scholar
  251. Tassin, J. P., Bockaert, J., Blanc, G., Stinus, L., Thierry, A. M., Lavielle, S., Premont, J., and Glowinski, J., 1978, Topographical distribution of dopaminergic innervation and dopaminergic receptors of the anterior cerebral cortex of the rat, Brain Res. 154: 241–251.PubMedGoogle Scholar
  252. Taube, H. D., Montel, H., Hau, G., and Starke, K., 1975, Phencyclidine and ketamine: comparison with the effect of cocaine on the noradrenergic neurones of the rat brain cortex, Naunyn-Schmiedeberg’s Arch. Pharmacol 291: 47–54.PubMedGoogle Scholar
  253. Teitelbaum, P., and Epstein, A. N., 1962, The lateral hypothalamic syndrome: recovery of feeding and drinking after lateral hypothalamic lesions, Physiol. Rev 69: 74–90.Google Scholar
  254. Ungerstedt, U., 1971, Adipsia and aphagia after 6-hydroxydopamine-induced degeneration of the nigro-striatal dopamine system, Acta Physiol. Scand. Suppl 367: 95–122.PubMedGoogle Scholar
  255. U’Prichard, D. C., Greenberg, D. A., and Snyder, S. H., 1977, Binding characteristics of a radiolabeled agonist and antagonist at central nervous system alpha noradrenergic receptors, Mol. Pharmacol 13: 454–473.PubMedGoogle Scholar
  256. van der Heyden, J. A. M., Venema, K., and Korf, J., 1980, In vivo release of endogenous GABA from rat striatum: Inhibition by dopamine, J. Neurochem 34: 1338–1341.Google Scholar
  257. Veening, J. G., Cornelissen, F. M., and Lieven, P. A.J. M., 1980, The topical organization of the afferents to the caudato-putamen of the rat. A horseradish peroxidase study, Neuroscience 5: 1253–1268.PubMedGoogle Scholar
  258. Vincent, J. P., Kartalovski, B., Geneste, P., Kamenka, J. M., and Lazdunski, M., 1979, Interaction of phencyclidine (“angel dust”) with a specific receptor in rat brain membranes, Proc. Natl Acad. Sci. U.S.A 76: 4678–4682.PubMedGoogle Scholar
  259. Wamsley, J. K., Zarbin, M. A., Birdsall, N. J. M., and Kuhar, M. J., 1980, Muscarinic cholinergic receptors: autoradiographic localization of high- and low-affinity agonist binding sites, Brain Res. 200: 1–12.PubMedGoogle Scholar
  260. Wang, R. Y., and Aghajanian, G. K., 1977, Physiological evidence for habenula as major link between forebrain and midbrain raphe, Science 197: 89–91.PubMedGoogle Scholar
  261. Watling, K. J., Dowling, J. E., and Iversen, L. L., 1979, Dopamine receptors in the retina may all be linked to adenylate cyclase, Nature (London) 281: 578–580.Google Scholar
  262. Webster, W. R., Serviere, J., Batini, C., and Laplante, S., 1978, Autoradiographic demonstration with 2-14C-deoxyglucose of frequency selectivity in the auditory system of cats under conditions of functional activity, Neurosci. Lett 10: 43–48.PubMedGoogle Scholar
  263. Wechsler, L. R., Savaki, H. E., and Sokoloff, L., 1979, Effects of d- and l-amphetamine on local cerebral glucose utilization in the conscious rat, J. Neurochem 32: 15–22.PubMedGoogle Scholar
  264. Weinberger, J., Greenberg, J. H., Waldman, M. T. G., Sylvestro, A., and Reivich, M., 1979, The effect of scopolamine on local glucose metabolism in rat brain, Brain Res. 177: 337–345.PubMedGoogle Scholar
  265. Weiss, B. L., and Aghajanian, G. K., 1971, Activation of brain serotonin metabolism by heat: role of midbrain raphe neurons, Brain Res. 26: 37–48.Google Scholar
  266. Wenk, H., Bigl, V., and Meyer, U., 1980, Cholinergic projections from magnocellular nuclei of the basal forebrain to cortical areas in rats, Brain Res. Rev 2: 295–316.Google Scholar
  267. Westerink, B. H. C., and Korf, J., 1975, Influence of drugs on striatal and limbic homovanillic acid concentration in the rat brain, Eur. J. Pharmacol 33: 31–40.PubMedGoogle Scholar
  268. Wick, A. N., Drury, D. R., Nakada, H. I., and Wolfe, J. B., 1957, Localization of the primary metabolic block produced by 2-deoxyglucose, J. Biol. Chem 224: 963–969.PubMedGoogle Scholar
  269. Winokur, A., and Utiger, R. D., 1974, Thyrotropin-releasing hormone: regional distribution in rat brain, Science 185: 265–267.PubMedGoogle Scholar
  270. Wolfe, L. S., and Coceani, F., 1979, The role of prostaglandins in the central nervous system, Annu. Rev. Physiol 41: 669–84.PubMedGoogle Scholar
  271. Wolfson, L. I., Sakurada, O., and Sokoloff, L., 1977, Effects of butyrolactone on local cerebral glucose utilization in the rat, J. Neurochem 29: 777–783.PubMedGoogle Scholar
  272. Wooten, G. F., and Collins, R. C., 1980, Regional brain glucose utilization following intrastriatal injections of kainic acid, Brain Res. 201: 173–184.PubMedGoogle Scholar
  273. Wuerthule, S. M., Lowell, K. K., Jones, M. Z., and Moore, K. E., 1978, A histological study of kainic acid induced lesions of the rat brain, Brain Res. 149: 489–497.Google Scholar
  274. Yarbrough, G. G., 1975, Supersensitivity of caudate neurones after repeated administration of haloperidol, Eur. J. Pharmacol 31: 367–369.PubMedGoogle Scholar
  275. Young, W. S., Ill, and Kuhar, M. J., 1979, Noradrenergic ai and a2 receptors: autoradiographic visualization, Eur. J. Pharmacol 59: 317–319.Google Scholar
  276. Young, W. S., III, and Kuhar, M. J., 1980, Radiohistochemical localization of benzodiazepine receptors in rat brain, J. Pharmacol Exp. Ther 212: 337–346.PubMedGoogle Scholar
  277. Zaczek, R., Simonton, S., and Coyle, J. T., 1980, Local and distant neuronal degeneration following intrastriatal injection of kainic acid, J. Neuropathol. Exp. Neurol 39: 245–264.PubMedGoogle Scholar
  278. Zatz, M., and Roth, R. H., 1975, Inhibition of cortical prostaglandin synthesis following indomethacin, Biochem. Pharmacol 24: 2101–2103.PubMedGoogle Scholar
  279. Zivkovic, B., Guidotti, A., Revuelta, A., and Costa, E., 1975, Effect of thioridazine, clozapine, and other antipsychotics on the kinetic state of tyrosine hydroxylase and on the turnover rate of dopamine in striatum and nucleus accumbens, J. Pharmacol Exp. Ther 194: 37–46.PubMedGoogle Scholar
  280. Zukin, S. R., and Zukin, R. S., 1979, Specific [3H]-phencyclidine binding in rat central nervous system, Proc. Natl Acad. Sci. U.S.A 76: 5372–5376.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • James McCulloch
    • 1
  1. 1.Wellcome Surgical InstituteUniversity of GlasgowGlasgowScotland

Personalised recommendations