Skip to main content

Intracellular Recording from Neurons in Brain Slices in Vitro

  • Chapter
Handbook of Psychopharmacology

Abstract

Slices are essentially short-term explant cultures and, as such, share the experimental advantages of both the whole brain in situ and cell culture, and to a certain extent combine the better features of both. Thus brain slices, like cell cultures, are environmentally defenseless and ideal for measuring the effects of changes in ionic composition and defined concentrations of drugs on cell function. This feature has made it possible to investigate, for example, the ionic basis of the neuronal resting potential (Li and McIlwain, 1957; Hillman and McIlwain, 1961; Gibson and McIlwain, 1965; Scholfield, 1978a), the calcium dependence of synaptic transmission (Richards and Sercombe, 1970; Dingledine and Somjen, 1981), and the effect on epileptiform activity of changing the bath concentration of Cl (Yamamoto and Kawai, 1968; Yamamoto, 1972b) or K+ (Ogata et al., 1976; Schwartzkroin and Prince, 1978). It has also been possible to construct concentration-percent inhibition curves for amino acid antagonists in cerebellar and hippocampal slices (Okamoto and Quastel, 1976, 1977; White et al., 1978). As in cell culture, recording and stimulating electrodes can be positioned under direct visual inspection in any desired areas of the slice preparation, even to the point of observing individual neurons in thinner slices (Yamamoto and Chujo, 1978; Takashi, 1978; Llinás and Sugimori, 1980a,b), thus eliminating the inherent uncertainty of stereotaxic techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, P. R., and Brown, D. A., 1975, Actions of 7-aminobutyric acid on sympathetic ganglion cells, J. Physiol 250: 85–120.

    PubMed  CAS  Google Scholar 

  • Alger, B. E., and Nicoll, R. A., 1979, GABA-mediated biphasic inhibitory responses in hippocampus, Nature 281: 315–317.

    PubMed  CAS  Google Scholar 

  • Alger, B. E., and Nicoll, R. A., 1980«, Spontaneous inhibitory postsynaptic potentials in hippocampus: mechanism for tonic inhibition, Brain Res. 200: 195–200.

    Google Scholar 

  • Alger, B. E., and Nicoll, R. A., 1980b, Epileptiform burst after hyperpolarization: calcium- dependent potassium potential in hippocampal CA1 pyramidal cells, Science 210: 1122–1124.

    PubMed  CAS  Google Scholar 

  • Alger, B. E., and Teyler, T. J., 1976, Long-term and short-term plasticity in the CA1, CA3, and dentate regions of the rat hippocampal slice, Brain Res. 110: 463–480.

    PubMed  CAS  Google Scholar 

  • Ames, A., Sakanove, M., and Endo, S., 1964, Na, K, Ca, Mg, and CI concentrations in choroid plexus fluid and cisternal fluid compared with plasma ultrafiltrate, J. Neurophysiol 27: 672–681.

    PubMed  Google Scholar 

  • Andersen, P., Eccles, J. C., and Loyning, Y., 1964, Location of postsynaptic inhibitory synapses on hippocampal pyramids, J. Neurophysiol 27: 592–607.

    PubMed  CAS  Google Scholar 

  • Andersen, P., Bliss, T. V. P., and Skrede, K. K., 1971a, Unit analysis of hippocampal population spikes, Exp. Brain Res 13: 208–221.

    PubMed  CAS  Google Scholar 

  • Andersen, P., Bliss, T. V. P., and Skrede, K. K., 1971b, Lamellar organization of hippocampal excitatory pathways, Exp. Brain Res 13: 222–238.

    Google Scholar 

  • Andersen, P., Bland, B. H., and Dudar, J. D., 1973, Organization of the hippocampal output, Exp. Brain Res 17: 152–168.

    PubMed  CAS  Google Scholar 

  • Andersen, P., Silfvenius, H., Sundberg, H., and Sveen, O., 1976, Effects of remote dendritic synapses on hippocampal pyramids, J. Physiol 266: 100 P.

    Google Scholar 

  • Andersen, P., Sundberg, S. H., Sveen, O., and Wigstrom, H., 1977, Specific long-lasting potentiation of synaptic transmission in hippocampal slices, Nature 266: 736–737.

    PubMed  CAS  Google Scholar 

  • Andersen, P., Bie, B., Ganes, T., and Mosfeldt-Laursen, A., 1978a, Two mechanisms for the effects of GAB A on hippocampal pyramidal cells, in: Iontophoresis and Transmitter Mechanisms in the Mammalian Control Nervous System ( R. W. Ryall and J. S. Kelly, eds.), Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Andersen, P., Gjerstad, L., and Langmoen, I. A., 1978b, A cortical epilepsy model in vitro, in: Abnormal Neuronal Discharges ( N. Chalazonitis and M. Boisson, eds.), Raven Press, New York.

    Google Scholar 

  • Andersen, P., Silfvenius, H., Sundberg, S. H., Sveen, O., and Wigstrom, H., 1978C, Functional characteristics of unmyelinated fibres in the hippocampal cortex, Brain Res. 144: 11–18.

    Google Scholar 

  • Andersen, P., Dingledine, R., Gjerstad, L., Langmoen, I. A., and Mosfeldt-Laursen, A., 1980, Two different responses of hippocampal pyramidal cells to application of gamma- aminobutyric acid (GABA), J. Physiol 305: 279–296.

    PubMed  CAS  Google Scholar 

  • Anderson, C. R., Cull-Candy, S. G., and Miledi, R., 1978, Glutamate current noise: postsynaptic channel kinetics investigated under voltage clamp, J. Physiol 282: 242–291.

    Google Scholar 

  • Assaf, S. Y., and Kelly, J. S., 1979, In the nature of depolarizing after-potentials in granuli cells of the rat dentate gyrus maintained in vitro, J. Physiol. (London) 296: 68 P.

    Google Scholar 

  • Assaf, S. Y., Crunelli, V., and Kelly, J. S., 1980, Spontaneous activity in the dentate gyrus of the rat hippocampal slice, International Congress of Physiological Sciences, Budapest (Abstract).

    Google Scholar 

  • Assaf, S. Y., Crunelli, V., and Kelly, J. S., 1981, Electrophysiology of the rat dentate gyrus in vitro, in: Electrophysiology of Isolated Mammalian CNS Preparations ( G. A. Kerkut and H. Wheal, eds.), pp. 153–187, Academic Press, New York.

    Google Scholar 

  • Ayala, G. F., and Thalmann, R. H., 1979, A biphasic IPSP in pyramidal neurones of hippocampal slices in the presence of pentobarbital, Soc. Neurosci. Abstr 5: 736.

    Google Scholar 

  • Azimita, E., and Segal, M., 1978, The efferent connections of the dorsal and median raphe nuclei in the rat brain, J. Comp. Neurol. 179:641–66J8.

    Google Scholar 

  • Bagust, J., and Kerkut, G. A., 1979, Some effects of magnesium ions upon conduction and synaptic activity in the isolated spinal cord of the mouse, Brain Res. 177: 410–413.

    PubMed  CAS  Google Scholar 

  • Bak, I., Misgeld, U., Weiler, M., and Morgan, E., 1980, The preservation of nerve cells in rat neostriatal slices maintained in vitro: a morphological study, Brain Res. 197: 341–353.

    PubMed  CAS  Google Scholar 

  • Barker, J. L., and Mathers, D. A., 1981, GABA analogues activate channels of different duration on cultured mouse spinal neurone, Science 212: 358–361.

    PubMed  CAS  Google Scholar 

  • Barnes, C. A., and McNaughton, B. L., 1980, Physiological compensation for loss of afferent synapses in rat hippocampal granule cells during senescence, J. Physiol 309: 473–485.

    PubMed  CAS  Google Scholar 

  • Barret, E., and Barret, J., 1976, Separation of two voltage-sensitive potassium currents, and demonstration of a tetrodotoxin-resistant calcium current in frog motoneurones, J. Physiol. (London) 255: 737–774.

    Google Scholar 

  • Barret, J. N., and Crill, W. E., 1974, Influence of dendritic location and membrane properties on the effectiveness of synapses on cat motoneurones, J. Physiol 239: 325–345.

    Google Scholar 

  • Bennett, M. V. L., Spira, M. E., and Spray, D. C., 1978, Permeability of gap junctions between embryonic cells of dundulus: a reevaluation. Dev. Biol 65: 114–125.

    PubMed  CAS  Google Scholar 

  • Benninger, C., Kadis, J., and Prince, D. A., 1980, Extracellular calcium and potassium changes in hippocampal slices, Brain Res. 187: 165–182.

    PubMed  CAS  Google Scholar 

  • Bernardi, G., Zieglgänsberger, W., Herz, A., and Puil, E. A., 1972, Intracellular studies on the action of L-glutamic acid on spinal neurones of the cat, Brain Res. 39: 523–525.

    PubMed  CAS  Google Scholar 

  • Blackman, J. G., Ginsborg, B. L., and House, C. R., 1979, On the time course of the electrical response of salivary gland cells of Nauphoeta cinerea to iontophoretically applied dopamine, J. Physiol 287: 81–92.

    PubMed  CAS  Google Scholar 

  • Bliss, T. V. P., and Gardner-Medwin, A. R., 1973, Long-lasting potentiation of synaptic transmission in the dentate area of the unanesthetized rabbit following stimulation of the perforant path, J. Physiol 232: 357–374.

    PubMed  CAS  Google Scholar 

  • Bliss, T. V. P., and Lomo, T., 1973, Long-lasting potentiation of synaptic transmission in the dentate area of the anesthetized rabbit following stimulation of the perforant path, J. Physiol 232: 331–356.

    PubMed  CAS  Google Scholar 

  • Bolton, T. B., 1972, Rate of offset of action of slow-acting muscarinic antagonists is fast, Nature (London) 270: 354–356.

    Google Scholar 

  • Bolton, T. B., 1976, On the latency and form of the membrane responses of smooth muscle to the iontophoretic application of acetylcholine or carbachol, Proc. R. Soc. London, Ser. B 194: 99–119.

    CAS  Google Scholar 

  • Bradford, H. F., 1977, The metabolic and transmitter-releasing properties of isolated nerve terminals, in: Synapses ( G. A. Cottrell and P. N. R. Usherwood, eds.), Blackie, Edinburgh.

    Google Scholar 

  • Bradford, H. F., and Richards, C. D., 1976, Specific release of endogenous glutamate from pyriform cortex stimulated in vitro, Brain Res. 105: 168–172.

    PubMed  CAS  Google Scholar 

  • Bragin, A. G., Zhadina, S. D., Vinogradova, O. S., and Kozhechkin, S. N., 1977, Topography and some characteristics of the dentate fascia-field CA3 relations investigated in hippocampal slices in vitro, Brain Res. 135: 55–66.

    PubMed  CAS  Google Scholar 

  • Brooks, C. M., Downman, C. B. B., and Eccles, J. C., 1950, After-potentials and Excitability of spiral motoneurones following antidromic activation, J. Neurophysiol 13: 9–38.

    PubMed  CAS  Google Scholar 

  • Brown, D. A., and Adams, P. R., 1980, Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone, Nature 283: 673–676.

    PubMed  CAS  Google Scholar 

  • Brown, D. A., and Constanti, A., 1980, Intracellular observations on the effects of muscarinic agonists on rat sympathetic neurones, Br. J. Pharmacol 70: 593–608.

    PubMed  CAS  Google Scholar 

  • Brown, D. A., and Scholfield, C. N., 1979, Depolarization of neurones in the isolated olfactory cortex of the guinea-pig by γ-aminobutyric acid, Br. J. Pharmacol 65: 339–345.

    PubMed  CAS  Google Scholar 

  • Brown, T. H., Wong, R. K. S., and Prince, D. A., 1979, Spontaneous miniature synaptic potentials in hippocampal neurones, Brain Res. 177: 194–199.

    PubMed  CAS  Google Scholar 

  • Bull R. J., and Cummins, J. T., 1973, Influence of potassium on the steady state redox potential of the electron transport chain in slices of rat cerebral cortex and the effect of ouabain, J. Neurochem 21: 923–927.

    PubMed  CAS  Google Scholar 

  • Bull, R. J., and Lutkenhoff, S. DI, 1973, Early changes in respiration aerobic glycolysis and cellular NAD-(P)H in slices of rat cerebral cortex exposed to elevated concentrations of potassium, J. Neurochem 21: 913–922.

    PubMed  CAS  Google Scholar 

  • Cammermeyer, J., 1978, Is the solitary dark neurone a manifestation of post-mortem trauma to the brain inadequately fixed by perfusion, Histochemistry 56: 97–115.

    PubMed  CAS  Google Scholar 

  • Chance B., and Williams, G. R., 1955, Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization, J. Biol. Chem 217: 383–393.

    PubMed  CAS  Google Scholar 

  • Chance, B., Cohen, M., Jöbsis, F. F., and Schoener, B., 1962, Intracellular oxidation reduction states in vivo, Science 137:449–508.

    Google Scholar 

  • Chance, B., Legallais, V., Sorge, J., and Graham, N., 1975, A versatile time-sharing multichannel spectrophotometer, reflectometer, and fluorometer, Anal. Biochem. 66:498–517.

    PubMed  CAS  Google Scholar 

  • Chujo, T., Yamada Y., and Yamamoto, C., 1975, Sensitivity of Purkinje cell dendrites to glutamic acid, Exp. Brain Res. 23:293–300.

    PubMed  CAS  Google Scholar 

  • Cohen, M. M., and Hartmann, J. F., 1964, Biochemical and Ultrastructural Correlates of Cerebral Cortex Slices Metabolizing in vitro, pp. 57–74, Harper and Row, New York.

    Google Scholar 

  • Colquhoun, D., Dionne, V. E., Steinbach, J. H., and Sturns, C. F., 1975, Conductance channels opened by acetylcholine-like drugs in muscle end-plate, Nature 235:204–206.

    Google Scholar 

  • Connors, J. A., and Stevens, C. F., 1971, Voltage clamp studies of a transient outward membrane current in gastropod neural somata, J. Physiol. 213:21–30.

    Google Scholar 

  • Conrad, L. C. A., Leonard, C. M., and Pfaff, D. W., 1974, Connections of the median and dorsal raphe nuclei in the rat: an autoradiographic and degeneration study, J. Comp. Neurol. 156:179–206.

    Google Scholar 

  • Constanti, A., Connor, J. D., Galvan, M., and Nistri, A., 1980, Intracellularly-recorded effects of glutamate and aspartate on neurones in the guinea-pig olfactory cortex slice, Brain Res. 195:403–420.

    PubMed  CAS  Google Scholar 

  • Constanti, A., Adams, P. R., and Brown, D. A., 1981, Why do barium ions imitate acetylcholine? Brain Res. 206:244–250.

    PubMed  CAS  Google Scholar 

  • Crawford, A. C., and McBurney, R. N., 1976, The postsynaptic action of some putative excitatory transmitter substances, Proc. R. Soc. London, Ser. B 192:481–489.

    Google Scholar 

  • Curtis, D. R., Duggan, A. W., Felix, D., Johnston, G. A. R., Tebécis, A. K., and Watkins, J. C., 1972, Excitation of mammalian central neurones by acidic amino acids, Brain Res. 41:283–301.

    Google Scholar 

  • Dahl, N. A., and Balfour, W. M., 1964, Prolonged anoxic survival due to anoxia pre-exposure: Brain ATP, lactate, and pyruvate, Am. J. Physiol. 220:1182–1186.

    Google Scholar 

  • Davies, J., and Watkins, J. C., 1977, Effect of magnesium ions on the responses of spinal neurones to excitatory amino acids and acetylcholine, Brain Res. 130:364–368.

    Google Scholar 

  • Davson, H., 1967, Physiology of the Cerebrospinal Fluid, Churchill, London.

    Google Scholar 

  • Deadwyler, S. A., Dudek, F. E., Cotman, C. W., and Lynch, G., 1975, Intracellular responses of rat dentate granule cells in vitro: post-tetanic potentiation to perforant path stimulation, Brain Res. 88:80–85.

    PubMed  CAS  Google Scholar 

  • Deadwyler, S. A., Dunwiddie, T., and Lynch, G., 1978, Short-lasting changes in hippocampal neuronal excitability following repetitive synaptic activation, Brain Res. 147:384–389.

    Google Scholar 

  • Deschenes, M., and Feltz, P., 1976, GABA-induced rise of extracellular potassium in dorsal root ganglia: an electrophysiological study in vivo, Brain Res. 118:494–499.

    PubMed  CAS  Google Scholar 

  • Dingledine, R., and Gjerstad, L., 1979, Penicillin blocks hippocampal IPSPs, unmasking prolonged EPSPs, Brain Res. 168:205–209.

    Google Scholar 

  • Dingledine R., and Gjerstad, L., 1980, Reduced inhibition during epileptiform activity in the in vitro hippocampal slice, J. Physiol. 305:297–313.

    Google Scholar 

  • Dingledine, R., and Langmoen, I. A., 1980, Conductance changes and inhibitory actions of hippocampal recurrent IPSPs, Brain Res. 185:277–287.

    Google Scholar 

  • Dingledine, R., and Somjen, G. G., 1981, Calcium dependence of synaptic transmission in the hippocampal slice, Brain Res. 207:218–222.

    Google Scholar 

  • Dingledine, R., Dodd, J., and Kelly, J. S., 1977a, Intracellular recording from pyramidal neurones in the in vivo transverse hippocampal slice, J. Physiol. 269:13–15P.

    Google Scholar 

  • Dingledine, R., Dodd, J., and Kelly, J. S., 19776, ACh excitation of cortical neurones, J. Physiol. 273:79–80P.

    Google Scholar 

  • Dingledine, R., Dodd, J., and Kelly, J. S., 1980, The in vitro brain slice as a useful neurophysiological preparation for intracellular recording, J. Neurosci. 2:323–362.

    Google Scholar 

  • Dionne, V. E., 1976, Characterization of drug iontophoresis with a fast microassay technique, Biophys. J 16: 705–717.

    PubMed  CAS  Google Scholar 

  • Dood, J., and Kelly, J. S., 1978, Is somatostatin an excitatory transmitter in the hippocampus? Nature 273: 674–675.

    Google Scholar 

  • Dood, J., and Kelly, J. S., 1981, The actions of cholecystokinin and related peptides on pyramidal neurones of the mammalian hippocampus, Brain Res. 205: 337–350.

    Google Scholar 

  • Dood, J., Dingledine, R., and Kelly, J. S., 1978, Intracellular recording from CA3 pyramidal neurones of hippocampal slices and the action of iontophoretic acetylcholine, in: Iontophoresis and Transmitter Mechanisms in the Mammalian Central Nervous System ( R. W. Ryall and J. S. Kelly, eds.), Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Dood, J., Dingledine, R., and Kelly, J. S., 1981, The excitatory action of acetylcholine on hippocampal neurones of the guinea-pig and rat maintained in vitro, Brain Res. 207: 109–127.

    Google Scholar 

  • Doré, C. F., and Richards, C. D., 1974, An improved chamber for maintaining mammalian brain tissue slices for electrical recording, J. Physiol 239: 83–85 P.

    Google Scholar 

  • Douglas, R. M., and Goddard, G. V., 1975, Long-term potentiation of the perforant path-granule cell synapse in the rat hippocampus, Brain Res. 86: 205–215.

    PubMed  CAS  Google Scholar 

  • Dreifuss, J.-J., Kelly, J. S., and Krnjević, K., 1969, Cortical inhibition and γ-aminobutyric acid, Exp. Brain Res. 9: 137–154.

    CAS  Google Scholar 

  • Dreyer, F., Walther, C., and Pepper, K., 1976, Junctional and extrajunctional acetylcholine receptors in normal and denervated frog muscle fibres, Pflügers Arch. 366: 1–9.

    PubMed  CAS  Google Scholar 

  • Dudar, J. D., 1972, Glutamic acid sensitivity of hippocampal pyramidal cell dendrites, Acta Physiol. Scand. 84:28A C6.

    Google Scholar 

  • Dudar, J. D., 1974, in vitro excitation of hippocampal pyramidal cell dendrites by glutamic acid, Neuropharmacology 13: 1083–1089.

    CAS  Google Scholar 

  • Dunwiddie, T. V., and Lynch, G., 1978, Long-term potentiation and depression of synaptic responses in the rat hippocampus: localization and frequency dependency, J. Physiol 276: 353–368.

    PubMed  CAS  Google Scholar 

  • Eckert, R., and Lux, H. D., 1976, A voltage–sensitive persistent calcium conductance in neuronal somata of helix, J. Physiol 254: 125 - 151.

    Google Scholar 

  • Elks, M. L., Youngblood, W. W., and Kizer, J. S., 1979, Synthesis and release of serotonin by brain slices: Effect of ionic manipulations and cationic ionophores, Brain Res. 172: 461–469.

    PubMed  CAS  Google Scholar 

  • Engberg, I., Flatman, J. A., and Lambert, J. D. C., 1975, D,L-Homocysteate-induced motoneurone depolarization with membrane conductance decrease, Br. J. Pharmacol 56: 250–251 P.

    Google Scholar 

  • Engberg, I., Flatman, J. A., and Lambert, J. D. C., 1978, The action of N-methyl-D-aspartic and kainic acids on motoneurones with emphasis on conductance changes, Br. J. Pharmacol 64: 384P–385 P.

    PubMed  CAS  Google Scholar 

  • Engberg, I., Flatman, J. A., and Lambert, J. D. C., 1979, The actions of excitatory amino acids on motoneurones in the feline spinal cord, J. Physiol 288: 227–261.

    PubMed  CAS  Google Scholar 

  • Engel, E., Barcilon, V., and Eisenberg, R. S., 1972, The interpretation of current-voltage relations recorded from a spherical cell with a single microelectrode, Biophys. J 12: 385–403.

    Google Scholar 

  • Fisher, R. S., Pedley, T. A., Moody, W. J., and Prince, D. A., 1976, The role of extracellular potassium in hippocampal epilepsy, Arch. Neurol Chicago 33: 76–83.

    PubMed  CAS  Google Scholar 

  • Frank, G., 1972, Brain Slices, in: The Structure and Function of Nervous Tissue, Vol. VI ( G. H. Bourne, ed.), Academic Press, New York.

    Google Scholar 

  • Frederickson, R. C., Jordan, L. M., and Phillis, J. W., 1971, The action of noradrenaline on central neurones: effect of PTH, Brain Res. 35: 556–560.

    PubMed  CAS  Google Scholar 

  • Fricke, R. A., Brown, T. H., and Prince, D. A., 1979, Electrotonic structure of hippocampal neurones, Soc. Neurosci. Abstr 5: 502.

    Google Scholar 

  • Fukuda, Y., and Loeschcke, H. H., 1977, Effect of H+ on spontaneous neuronal activity in the surface layer of the rat medulla oblongata in vitro, Pflügers Arch. 371: 125–134.

    PubMed  CAS  Google Scholar 

  • Gähwiler, B. H., 1980, Excitatory action of opioid peptides and opiates on cultured hippocampal pyramidal cells, Brain Res. 194: 193–203.

    PubMed  Google Scholar 

  • Gähwiler, B. H., 1981, Organotypic monolayer cultures of nervous tissue, J. Neurosci. Methods, 4: 329–342.

    PubMed  Google Scholar 

  • Gähwiler, B. H., and Bauer, W., 1975, Design of a temperature-controlled microchamber for electrophysiological experiments in vitro, Experientia (Basel) 31: 868–869.

    Google Scholar 

  • Gähwiler, B. H., Mamoon, A. M., and Tobias, C. A., 1973, Spontaneous bioelectric activity of cultured purkinje cells during exposure to agents which prevent synaptic transmission, Brain Res. 53: 71–79.

    PubMed  Google Scholar 

  • Gähwiler, B. H., Sandoz, P., and Dreifuss, J. J., 1978, Neurones with synchronous bursting discharges in organ cultures of the hypothalamic supraoptic nucleus area, Brain Res. 151: 245–253.

    PubMed  Google Scholar 

  • Garthwaite, J., Woodhams, P. L., Collins, M. J., and Balaz, R., 1979, On the preparation of brain slices: morphology and cyclic nucleotides, Brain Res. 173: 373–377.

    PubMed  CAS  Google Scholar 

  • Geinisman, Y., and Bondareff, W., 1976, Decrease in the number of synapsis in senescent brain: a quantitative electron microscopic analysis of the dentate gyrus molecular layer in the rat, Mech. Ageing Dev 5: 11–23.

    Google Scholar 

  • Geyer, R. P., 1975, Potential uses of artificial blood substitutes, Fed. Proc 34: 1525–1528.

    PubMed  CAS  Google Scholar 

  • Gibson, I. M., and McIlwain, H., 1965, Continous recording of changes in membrane potential in mammalian cerebral tissues in vitro: recovery after depolarization by added substances, J. Physiol 176: 261–283.

    PubMed  CAS  Google Scholar 

  • Ginsborg, B. L., 1967, Ion movements in junctional transmission, Pharmacol. Rev 19: 289–316.

    PubMed  CAS  Google Scholar 

  • Ginsborg, B. L., 1973, Electrical changes in the membrane in junctional transmission, Biochim. Biophys. Acta 300: 289–317.

    PubMed  CAS  Google Scholar 

  • Ginsborg, B. L., House, C. R., and Silinsky, E. M., 1974, Conductance changes associated with the secretory potential in the cockroach salivary gland, J. Physiol 236: 723–731.

    PubMed  CAS  Google Scholar 

  • Gjerstad, L., Langmoen, I. A., and Andersen, P., 1978, Factors affecting epileptiform pyramidal cell discharges in vitro, in: Advances in Epileptology, 1977 ( H. Meinardi and A. J. Rowan, eds.), Swets and Zeitlinger, Amsterdam.

    Google Scholar 

  • Godfraind, J.-M., and Kelly, J. S., 1981, Intracellular recording from thin slices of the lateral geniculate nucleus of rats and cats, in: Electrophysiology of Isolated Mammalian CNS Preparations ( G. A. Kerkut and A. Wheal, eds.), pp. 257–283, Academic Press, New York.

    Google Scholar 

  • Gutnick, M. J., and Prince, D. A., 1981, Dye coupling and possible electrotonic coupling in the guinea-pig neocortical slice, Science 211: 67–70.

    PubMed  CAS  Google Scholar 

  • Guyenet, P. G., Mroz, E. A., Aghajanian, G. K., and Leeman, S. E., 1979, Delayed iontophoretic ejection of substance P from glass micropipettes: correlation with time course of neuronal excitation in vivo, Neuropharmacology 18: 553–558.

    PubMed  CAS  Google Scholar 

  • Haas, H. L., Schaerer, B., and Vosmansky, M., 1979, A simple perfusion chamber for the study of nervous tissue slices in vitro, J. Neurosci. Methods 1: 323–325.

    PubMed  CAS  Google Scholar 

  • Hagiwara, S., and Tasaki, I., 1958, A study on the mechanism of impulse transmission across the giant synapse of the squid, J. Physiol 143: 114–137.

    PubMed  CAS  Google Scholar 

  • Hagiwara, S., Fukuda, J., and Eaton, D. C., 1974, Membrane currents carried by Ca, Sr, and Ba. Barnacle muscle fibre during voltage clamp, J. Gen. Physiol. 63: 564–578.

    Google Scholar 

  • Haller, E. W., Brimble, M. J., and Wakerley, J. B., 1978, Phasic discharge in supraoptic neurones recorded from hypothalamic slices, Exp. Brain Res 33: 131–134.

    PubMed  CAS  Google Scholar 

  • Hamberger, A., Chiang, G., Nylen, E. A., Scheff, S. W., and Cotman, C. W., 1978, Stimulant-evoked increase in the biosynthesis of the putative neurotransmitter glutamate in the hippocampus, Brain Res. 143: 549–555.

    PubMed  CAS  Google Scholar 

  • Hartzell, J. C., Kuffler, S. W., Stickgold, R., and Yoshikami, D., 1977, Synaptic excitation and inhibition resulting from direct action of acetylcholine on two types of chemoreceptors on individual amphibian parasympathetic neurones, J. Physiol 271: 817–846.

    PubMed  CAS  Google Scholar 

  • Harvey, J. A., Scholfield, C. N., and Brown, D. A., 1974, Evoked surface-positive potentials in isolated mammalian olfactory cortex, Brain Res. 76: 235–245.

    PubMed  CAS  Google Scholar 

  • Hatton, G. I., Armstrong, W. E., and Gregory, W. A., 1978, Spontaneous and osmotically stimulated activity in slices of rat hypothalamus, Brain Res. Bull. 3: 497–508.

    CAS  Google Scholar 

  • Hatton, G. I., Doran, A. D., Salm, A. K., and Tweedle, C. D., 1980, Brain Slice preparation: hypothalamus, Brain Res. Bull 5: 405–414.

    PubMed  CAS  Google Scholar 

  • Herz, A., Zieglgänsberger, W., and Färber, G., 1969, Microelectrophoretic studies concerning the spread of glutamic acid and GAB A in brain tissue, Exp. Brain Res 9: 221–235.

    PubMed  CAS  Google Scholar 

  • Heyer, C. B., and Lux, H. D., 1976, Control of the delayed outward potassium currents in bursting pacemaker neurones of the snail Helix pomatia, J. Physiol (London) 262: 349–382.

    CAS  Google Scholar 

  • Hillman, H. H., and McIlwain, J., 1961, Membrane potentials in mammalian cerebral tissues in vitro: dependence on ionic environment, J. Physiol 157: 263–278.

    PubMed  CAS  Google Scholar 

  • Hill-Smith, I., and Purves, R. D., 1978, Synaptic delay in the heart: an iontophoretic study, J. Physiol 279: 31–54.

    PubMed  CAS  Google Scholar 

  • Hoffman, R., 1977, The modulatory control microscope: principle and performance, J. Microsc 110: 205–222.

    Google Scholar 

  • Hotson, J. R., and Prince, D. A., 1980, A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurones, J. Neurophysiol 43: 409–419.

    PubMed  CAS  Google Scholar 

  • Hotson, J. R., Prince, D. A., and Schwartzkroin, P. A., 1979, Anomalous inward rectification in hippocampal neurones, J. Neurophysiol 42: 889–895.

    PubMed  CAS  Google Scholar 

  • Ibata, Y., Piccoli, F., Pappas, G. D., and Lajtha, A., 1971, An electron microscopic and biochemical study on the effect of cyanide and low Na+ on rat brain slices, Brain Res. 30: 137–158.

    PubMed  CAS  Google Scholar 

  • Ioffe, S., Havlicek, V., Friesen, H., and Chernicl, V., 1978, Effect of somatostatin (SRIF) and L-glutamate on neurones of the sensorimotor cortex in awake habituated rabbits, Brain Res. 153: 414–418.

    PubMed  CAS  Google Scholar 

  • Jacks, J. J. B., Noble, D., and Tsien, R. W., 1975, Electric Current Flow in Excitable Cells, Clarendon Press, Oxford.

    Google Scholar 

  • Jahnsen, H., 1980, The action of 5-hydroxytryptamine on neuronal membranes and synaptic transmission in area CA1 of the hippocampus in vitro, Brain Res. 197: 83–94.

    PubMed  CAS  Google Scholar 

  • Jahnsen, H., and Laursen, A. M., 1981, The effects of a benzodiazepine on the hyperpolarizing and the depolarizing responses of hippocampal cells to GABA, Brain Res. 207: 214–217.

    PubMed  CAS  Google Scholar 

  • Jansen, J. K., and Nicholls, J. G., 1973, Conductance changes, an electrogenic pump and the hyperpolarization of leech neurones following impulses, J. Physiol (London) 229: 635–655.

    CAS  Google Scholar 

  • Jeffrys, J. G. R., 1979, Initiation and spread of action potentials in granule cells maintained in vitro in slices of guinea-pig hippocampus, J. Physiol (London) 289: 375.

    Google Scholar 

  • Johnston, D., and Brown, T. H., 1981, Giant synaptic potential hypothesis for epileptiform activity, Science 211: 294–297.

    PubMed  CAS  Google Scholar 

  • Johnston, D., and Hablitz, J., 1979, Voltage-clamp analysis of CA3 neurones in hippocampal slices, Soc. Neurosci. Abstr 5: 292.

    Google Scholar 

  • Johnston, D., Hablitz, J. J., and Wilson, W. A., 1980, Voltage-clamp discloses slow inward current in hippocampal burst-firing neurones, Nature 286: 391–393.

    PubMed  CAS  Google Scholar 

  • Kawai, N., and Yamamoto, C., 1967, Effects of 7-aminobutyric acid on the potentials evoked in vitro in the superior colliculus, Experientia 23: 822–823.

    PubMed  CAS  Google Scholar 

  • Kelly, J. S., 1975, Microiontophoretic application of drugs onto single neurones, in: Handbook of Psychopharmacology, Vol. 2 (L. L. Iversen, S. D. Iversen, and S. Snyder, eds.), Plenum Press, New York.

    Google Scholar 

  • Kelly, J. S., and Dick, F., 1976, Differential labelling of glial cells and GABA-inhibitory interneurones and nerve terminals following the microinjection of [3H]-β-alanine, [3H] -GABA, and [3H]-DABA into single folia of the cerebellum, Cold Spring Symp. Quant. Biol 40: 93–106.

    CAS  Google Scholar 

  • Kelly, J. S., Krnjević, and Somjen, G., 1969, Divalent cations and electrical properties of cortical cells, J. Neurobiol 2: 197–208.

    Google Scholar 

  • Kelly, J. S., Godfraind, J.-M., and Maruyama, S., 1979a, The presence and nature of inhibition in small slices of the dorsal lateral geniculate nucleus of rat and cat incubated in vitro, Brain Res. 168: 388–392.

    PubMed  CAS  Google Scholar 

  • Kelly, M. J., Kuhnt, V., and Wuttke, W., 1979b, Morphological features of physiologically identified hypothalamic neurones as revealed by intracellular marking, Exp. Brain Res 34: 107–116.

    PubMed  CAS  Google Scholar 

  • Koike, J., Mano, N., Okada, Y., and Oshima, T., 1972, Activities of the sodium pump in cat pyramidal tract cells investigated with intracellular injection of sodium ions, Exp. Brain Res 14: 449–462.

    PubMed  CAS  Google Scholar 

  • Krnjević, K., and Lisiewicz, A., 1972, Injections of calcium ions into spinal motoneurones, J. Physiol. (London) 225: 363–390.

    Google Scholar 

  • Krnjević, K., and Phillis, J. W., 1963, Pharmacological properties of acetylcholine-sensitive cells in the cerebral cortex, J. Physiol. (London) 166: 328–350.

    Google Scholar 

  • Krnjević, K., Puil, E., and Werman, R., 1979, EGTA and motoneuronal after-potentials, J. Physiol. (London) 275: 199–224.

    Google Scholar 

  • Krnjević, K., Pumain, R., and Renaud, L., 1971, the mechanism of excitation by acetylcholine in the cerebral cortex, J Physiol. 215: 247–268.

    Google Scholar 

  • Kuba, K., and Kuketsu, K., 1976, Analysis of the slow excitatory postsynaptic potential in bullfrog sympathetic ganglion cells, Jpn. J. Physiol 26: 647–664.

    Google Scholar 

  • Kuhnt, V., Kelly, M. J., and Schaumberg, R., 1979, Transynaptic transport of Procion Yellow in the central nervous system, Exp. Brain Res 35: 371–386.

    PubMed  CAS  Google Scholar 

  • Kuno, M., and Llinás, R 1970, Enhancement of synaptic transmission by dendritic potentials in chromatolyzed motoneurones of the cat, J. Physiol 210: 807–821.

    PubMed  CAS  Google Scholar 

  • Laatsch, H. R., and Cowan, W. M., 1966, Electron microscopic studies of the dentate gyrus of the rat. I. normal structure with special reference to synaptic organisation, J. Comp. Neurol 128: 359–396.

    PubMed  CAS  Google Scholar 

  • Langmoen, I. A., and Dingledine, R., 1979, On the time course of recurrent inhibition in hippocampal pyramidal cells in vitro, Acta Physiol. Scand 105: 40–41A.

    Google Scholar 

  • Langmoen, I. A., Andersen, P., Gjerstad, L., Mosfeldt-Laursen, A., and Ganes, T., 1978, Two separate effects of GABA on hippocampal pyramidal cells in vitro, Acta Physiol. Scand 102: 28–29A.

    Google Scholar 

  • Langmoen, I. A., Segal, M., and Andersen, P., 1981, Mechanisms of norepinephrine actions on hippocampal pyramidal cells in vitro, Brain Res. 208: 349–362.

    PubMed  CAS  Google Scholar 

  • Lee, T.-P., Kuo, J. F., and Greengard, P., 1972, Role of muscarinic cholinergic receptors in regulation of guanosine 3′,5′-cyclic monophosphate content in mammalian brain, heart muscle, and intestinal smooth muscle, Proc. Natl. Acad. Sci. USA 69: 3287–3291.

    PubMed  CAS  Google Scholar 

  • Li, C.-L., and McIlwain, H., 1957, Maintenance of resting membrane potentials in slices of mammalian cerebral cortex and other tissues in vitro, J. Physiol 139: 178–190.

    PubMed  CAS  Google Scholar 

  • Lipton, P., and Whittingham, T. W., 1979, The effect of hypoxia on evoked potentials in the in vitro hippocampus, J. Physiol 287: 427–438.

    PubMed  CAS  Google Scholar 

  • Llinás, R., and Hess, R., 1976, Tetrodotoxin-resistant dendritic spikes in avian purkinje cells, Proc. Natl. Acad. Sci. USA 73: 2520–2523.

    PubMed  Google Scholar 

  • Llinás, R., and Nicholson, C., 1969, Electrophysiological analysis of alligator cerebellar cortex: a study on dendritic spikes, in: Neurobiology of Cerebellar Evolution and Development ( R. Llinás, ed.), pp. 431–465, Chicago: American Medical Assoc.

    Google Scholar 

  • Llinás, R., and Nicholson, C., 1971, Electrophysiological properties of dendrites and somata in alligator purkinje cells, J. Neurophysiol 34: 534–551.

    Google Scholar 

  • Llinás, R., and Sugimori, M., 1980a, Electrophysiological properties of in vitro purkinje cell somata in mammalian cerebellar slices, J. Physiol 305: 171–195.

    PubMed  Google Scholar 

  • Llinás, R., and Sugimori, M., 19806), Electrophysiological properties of in vitro purkinje cell dendrites in mammalian cerebellar slices, J. Physiol 305: 197–213.

    Google Scholar 

  • Llinás, R., and Yarom, Y., 1980, Electrophysiological properties of mammalian inferior olivary cells in vitro, in: The Injection Olivary Nucleus ( J. Courville, ed.) Raven Press, New York.

    Google Scholar 

  • Loeser, J. D., and Ward, A. A., 1967, Some effects of deafferentation on neurones of the cat spinal cord, Arch. Neurol 17: 629–635.

    PubMed  CAS  Google Scholar 

  • Lorente de Nó, R., 1934, Studies on the structure of the cerebral cortex. II. Continuation of the study on the amnionic system, J Psychol Neurol (Leipzig) 46: 113–117.

    Google Scholar 

  • Lynch, G., and Schubert, P., 1980, The use of in vitro brain slices for multidisciplinary studies of synaptic function, Annu. Rev. Neurosci 3: 1–22.

    PubMed  CAS  Google Scholar 

  • Lynch, G. S., Gribkoff, V. K., and Deadwyler, S. A., 1976, Long-term potentiation is accompanied by a reduction in dendritic responsiveness to glutamic acid, Nature 263: 151–153.

    PubMed  CAS  Google Scholar 

  • Lynch, G. S., Dunwiddie, T. V., and Gribkoff, V. K., 1977, Heterosynaptic depression: a postsynaptic correlate of long term potentiation, Nature (London) 266: 737–739.

    CAS  Google Scholar 

  • MacDonald, R., and Barker, J. L., 1978, Benzodiazepines specifically modulate GABA-mediated postsynaptic inhibition in cultured mammalian neurones, Nature (London) 271: 563–564.

    CAS  Google Scholar 

  • Macon, J. B., 1979, Deafferentation hyperactivity in the monkey spinal trigeminal nucleus: neuronal responses to amino acid iontophoresis, Brain Res. 161: 549–554.

    PubMed  CAS  Google Scholar 

  • MacVicar, B. A., and Dudek, F. E., 1979, Intracellular recordings from CA3 pyramidal cells during repetitive activation of the mossy fibres in vitro, Brain Res. 168: 377–381.

    PubMed  CAS  Google Scholar 

  • MacVicar, B. A., and Dudek, F. E., 1980a, Local synaptic circuits in rat hippocampal slices: interactions between pyramidal cells, Brain Res. 184: 220–223.

    PubMed  CAS  Google Scholar 

  • MacVicar, B. A., and Dudek, F. E., 1980b, Dye-coupling between CA3 pyramidal cells in slices of rat hippocampus, Brain Res. 196: 494–497.

    PubMed  CAS  Google Scholar 

  • Martin, A. R., and Pilar, G., 1963, Dual mode of synaptic transmission in the avian ciliary ganglion, J. Physiol 168: 443–463.

    PubMed  CAS  Google Scholar 

  • Mathers, D. A., and Barker, J. L., 1981, GAB A and muscimol open ion channels of different lifetimes on cultured mouse spinal cord, Brain Res. 204: 242–247.

    PubMed  CAS  Google Scholar 

  • Matthews, D. A., Cotman, C., and Lynch, G., 1976, An electron microscopic study of lesion-induced synaptogenesis in the dentate gyrus of the adult rat. I. Magnitude and time course of degeneration, Brain Res. 115: 1–21.

    PubMed  CAS  Google Scholar 

  • Maugh, H., 1973, Perfluorochemical emulsions: promising blood substitute, Science 179: 669–672.

    PubMed  Google Scholar 

  • McBurney, R., 1981, Beyond the giga-seal, Nature 290: 16.

    PubMed  CAS  Google Scholar 

  • McCaman, R. E., Makenna, D. G., and Ono, J. K., 1977, A pressure system for intracellular and extracellular ejections of picoliter volumes, Brain Res. 136: 141–147.

    PubMed  CAS  Google Scholar 

  • McGale, E. H. F., Pye, I. F., Stonier, C., Hutchinson, E. C., and Aber, G. M., 1977, Studies of the interrelationship between cerebrospinal fluid and plasma amino acid concentrations in normal individuals, J. Neurochem 29: 291–297.

    PubMed  CAS  Google Scholar 

  • McIlwain, H., and Rodnight, R., 1962, Practical Neurochemistry, Churchill, London.

    Google Scholar 

  • Meech, R. W., 1974, Calcium influx induces a post-tetanic hyperpolarization in aplysia neurones, Comp. Biochem. Physiol A 48: 387–395.

    CAS  Google Scholar 

  • Meech, R. W., and Standen, N. B., 1975, Potassium activation in Helix aspersa neurones under voltage clamp: a component mediated by calcium influx, J. Physiol (London) 249: 211–239.

    CAS  Google Scholar 

  • Miller, J. J., and Rutherford, D. P., 1978, Electrical activity in the in vitro caudate preparation, Soc. Neurosci. Abstr 4: 47.

    Google Scholar 

  • Misgeld, Y., Okada, Y., and Hassler, R., 1979, Locally evoked potentials of rat neostriatum: a tool for the investigation of intrinsic excitatory processes, Exp. Brain Res 34: 575–590.

    PubMed  CAS  Google Scholar 

  • Moore, R. Y., and Halaris, A. E., 1975, Hippocampal innervation by serotonin neurones of the midbrain raphe in the rat, J. Comp. Neurol 164: 171–184.

    PubMed  CAS  Google Scholar 

  • Nadler, J. V., Vaca, K. W., White, W. F., Lynch, G., and Cotman, C. W., 1976, Aspartate and glutamate as possible transmitters of excitatory hippocampal afferents, Nature 260: 530–540.

    Google Scholar 

  • Nadler, J. V., White, W. F., Vaca, K. W., Redburn, D. A., and Cotman, C. W., 1977, Characterization of putative amino acid transmitter release from slices of rat dentate gyrus, J. Neurochem 29: 279–290.

    PubMed  CAS  Google Scholar 

  • Naito, R., and Yokoyama, K., 1978, Perfluorochemical blood substitutes “FLUOSOL-43” FLUOSOL-DA, 20% and 35%, Technical Information Br. No. 5, The Green Cross, Japan.

    Google Scholar 

  • Nicholson, C., 1979, Brain cell microenvironment as a communication channel, in: The Neurosciences: Fourth Study Program ( F. O. Schmitt and F. G. Worden, eds., MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Nicoll, R. A., and Alger, B. E., 1981, A simple chamber for recording from submerged brain slices, J. Neurosci Meth 4: 153–156.

    CAS  Google Scholar 

  • Nicoll, R. A., Eccles, J. C., Oshima, T., and Rubia, F., 1975, Prolongation of hippocampal inhibitory postsynaptic potentials by barbiturates, Nature 258: 625–627.

    PubMed  CAS  Google Scholar 

  • Nicoll, R. A., Alger, B. E., and Jahr, C. E., 1980, Enkephalin blocks inhibitory pathways in the vertebrate CNS, Nature 287: 22–25.

    PubMed  CAS  Google Scholar 

  • Niedergerke, R., and Page, S., 1977, Analysis of catecholamine effects in single atrial trabeculae of the frog heart, Proc. R. Soc. London, Ser. B 197: 333–362.

    CAS  Google Scholar 

  • Ogata, N., 1975, Ionic mechanisms of the depolarization shift in thin hippocampal slices, Exp. Neurol 46: 147–155.

    PubMed  CAS  Google Scholar 

  • Ogata, N., 1979, Substance P causes direct depolarization of neurones of guinea-pig interpeduncular nucleus in vitro, Nature 277: 480–481.

    PubMed  CAS  Google Scholar 

  • Ogata, N., Hori, N., and Katauda, N., 1976, The correlation between extracellular potassium concentration and hippocampal epileptic activity in vitro, Brain Res. 110: 371–375.

    PubMed  CAS  Google Scholar 

  • Okamoto, K., and Quastel, J. H., 1976, Effects of amino acids and convulsants on spontaneous action potentials in cerebellar cortex slices, Br. J. Pharmacol 57: 3–15.

    PubMed  CAS  Google Scholar 

  • Okamoto, K., and Quastel, J. H., 1977, Effects of N-methylamino acids and convulsants on spontaneous action potentials in guinea-pig cerebellar slices, Br. J. Pharmacol 59: 551–560.

    PubMed  CAS  Google Scholar 

  • Olpe, H.-R., Balcar, V. J., Bittiger, H., Rinr, H., and Sieber, P. (1980), Central actions of somatostatin, Eur. J. Pharmacol 63: 127–133.

    PubMed  CAS  Google Scholar 

  • Pepper, C. M., and Henderson, G., 1980, Opiates and opioid peptides hyperpolarize locus coeruleus neurones in vitro, Science 209: 394–396.

    PubMed  CAS  Google Scholar 

  • Perry, T. L., Hansen, S., and Kennedy, J., 1975, CSF amino acids and plasma-CSF amino acid ratios in adults, J. Neurochem 24: 587–589.

    PubMed  CAS  Google Scholar 

  • Pickles, J. G., and Simmonds, M. A., 1978, Field potentials, inhibition and the effect of pentobarbitone in the rat olfactory cortex slice. J. Physiol 275: 135–148.

    PubMed  CAS  Google Scholar 

  • Prince, D. A., 1978, Neurophysiology of epilepsy, Annu. Rev. Neurosci 1: 395–415.

    PubMed  CAS  Google Scholar 

  • Prince, D. A., Lux, H. D., and Neher, E., 1973, Measurement of extracellular potassium activity in cat cortex, Brain Res. 50: 489–495.

    PubMed  CAS  Google Scholar 

  • Prince, D. A., Wong, R. K. S., and Basbaum, A. I., 1978, Membrane properties of identified human cortical neurones, Soc. Neurosci. Abstr 4: 79.

    Google Scholar 

  • Purves, R. D., 1974, Muscarinic excitation: a microelectrophoretic study on cultured smooth muscle cells, Br. J. Pharmacol 52: 77–86.

    PubMed  CAS  Google Scholar 

  • Purves, R. D., 1977, The time course of cellular responses to iontophoretically applied drugs, J. Theor. Biol 65: 327–344.

    PubMed  CAS  Google Scholar 

  • Rall, W., 1962, Theory of physiological properties of dendrites, Ann. N. Y. Acad. Sci, 96: 1071–1092.

    PubMed  CAS  Google Scholar 

  • Rall, W., 1977, Core conductor theory and cable properties of neurones, in: The Nervous System. Vol. 1. Cellular Biology of Neurones ( E. R. Kandel, ed.), Am. Physiol. Soc., Bethesda.

    Google Scholar 

  • Randić, M., and Miletic, V., 1978, Depressant actions of methionine-enkephalin and somatostatin in cat dorsal horn neurones activated by noxious stimuli, Brain Res. 152: 196–202.

    PubMed  Google Scholar 

  • Rawlins, J. N. P., and Green, K. F., 1977, Lamellar organization in the rat hippocampus, Exp. Brain Res. 28: 335–344.

    CAS  Google Scholar 

  • Redman, S. J., 1976, A quantitative approach to integrative function of dendrites, Int. Rev. Physiol. (Neurophysiol. II) 10: 1–35.

    Google Scholar 

  • Renaud, L. P., Martin, J. B., and Brazeau, P., 1975, Depressant action of TRH, LH-RH, and somatostatin on activity of central neurones, Nature 255: 233–235.

    PubMed  CAS  Google Scholar 

  • Richards, C. D., 1978, Evidence of localization of glutamate receptors in layer 1A of the dendritic field of neurones in the prepiriform cortex, in: Iontophoresis and Transmitter Mechanisms in the Mammalian Central Nervous System ( R. W. Ryall and J. S. Kelly, eds.), Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Richards, C. D., and Sercombe, R., 1968, Electrical activity observed in guinea-pig olfactory cortex maintained in vitro, J. Physiol 197: 667–683.

    PubMed  CAS  Google Scholar 

  • Richards, C. D., and Sercombe, R., 1970, Calcium, magnesium, and the electrical activity of guinea-pig olfactory cortex in vitro, J. Physiol 211: 571–584.

    PubMed  CAS  Google Scholar 

  • Richards, C. D., and Tegg, W. J. B., 1977, A superfusion chamber suitable for maintaining mammalian brain tissue slices for electrical recording, Br. J. Pharmacol 59: 536 P.

    Google Scholar 

  • Rinzel, J., and Rall, W., 1974, Transient response in a dendritic neurone model for current injection at one branch, Biophys. J 14: 759–790.

    PubMed  CAS  Google Scholar 

  • Ryall, R. W., and Kelly, J. S., 1978, eds., Iontophoresis and Transmitter Mechanisms in the Mammalian Central Nervous System, Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Sakai, M., Swartz, B. E., and Woody, C. D., 1979, Controlled microrelease of pharmacological agents: measurements of volume ejected in vitro through fine-tipped glass microelectrodes by pressure, Neuropharmacology 18: 209–213.

    PubMed  CAS  Google Scholar 

  • Schmitt, F. O., and Samson, F. E., 1969, Brain cell microenvironment, Neurosci. Res. Prog. Bull 7: 277–417.

    Google Scholar 

  • Scholfield, C. N., 1978a, Electrical properties of neurones in the olfactory cortex slice in vitro, J. Physiol 275: 535–546.

    PubMed  CAS  Google Scholar 

  • Scholfield, C. N., 19786, A depolarizing inhibitory potential in neurones of the olfactory cortex in vitro, J. Physiol 275: 547–558.

    Google Scholar 

  • Schubert, P., and Mitzdorf, U., 1979, Analysis and quantitative evaluation of the depressive effect of adenosine on evoked potentials in hippocampal slices, Brain Res. 172: 186 — 190.

    PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A., 1975, Characteristics of CA1 neurones recorded intracellularly in the hippocampal in vitro slice preparation, Brain Res. 85: 423–436.

    PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A., 1977, Further characteristics of hippocampal CA1 cells in vitro, Brain Res. 128: 53–68.

    PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A., 1978, Epileptogenesis and calcium spiking in the hippocampal slice, in: Iontophoresis and Transmitter Mechanisms in the Mammalian Central Nervous System ( R. W. Ryall and J. S. Kelly, eds.), Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Schwartzkroin, P. A., and Andersen, P., 1975, Glutamic acid sensitivity of dendrites in hippocampal slices in vitro, Adv. Neurol 12: 45–51.

    PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A., and Mathers, L. H., 1978, Physiological and morphological identification of a nonpyramidal hippocampal cell type, Brain Res. 157: 1–10.

    PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A., and Prince, D. A., 1976, Microphysiology of human cerebral cortex studied in vitro, Brain Res. 115: 497–500.

    PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A., and Prince, D. A., 1977, Penicillin-induced epileptiform activity in the hippocampal in vitro preparation, Ann. Neurol 1: 463–469.

    PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A., and Prince, D. A., 1978, Cellular and field potential properties of epileptogenic hippocampal slices, Brain Res. 147: 117–130.

    PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A., and Prince, D. A., 1980, Effects of tea on hippocampal neurones, Brain Res. 185: 169–181.

    PubMed  CAS  Google Scholar 

  • Schwartzkroin, D. A., and Slawsky, M., 1977, Probable calcium spikes in hippocampal neurones, Brain Res. 135: 157–161.

    PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A., and Stafstrom, C. E., 1980, Effects of EGTA on the calcium- activated after-hyperpolarization in hippocampal CA3 pyramidal cells, Science 210: 1125–1126.

    PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A., and Wester, K., 1975, Long-lasting facilitation of a synaptic potential following tetanization in the in vitro hippocampal slice, Brain Res. 89: 107–119.

    PubMed  CAS  Google Scholar 

  • Schwid, C. R., Honeyman, T. W., and Fay, F. S., 1979, Mechanism of beta-adrenergic relaxation of smooth muscle, Nature (London) 277: 32–36.

    Google Scholar 

  • Segal, M., 1980, The action of serotonin in the rat hippocampal slice preparation, J. Physiol 303: 423–439.

    PubMed  CAS  Google Scholar 

  • Segal, M., 1981, The action of norepinephrine in the rat hippocampus: intracellular studies in the slice preparation, Brain Res. 206: 107–128.

    PubMed  CAS  Google Scholar 

  • Segal, M., and Gutnick, M. J., 1980, Effects of serotonin on extracellular potassium concentration in the rat hippocampal slice, Brain Res. 195: 389–401.

    PubMed  CAS  Google Scholar 

  • Segal, M., Bar Sagie, D., and Mayevsky, A., 1980, Metabolic changes induced in rat hippocampal slices by norepinephrine, Brain Res. 202: 387–399.

    PubMed  CAS  Google Scholar 

  • Shapovalov, A. I., Shiriaev, B. I., and Velumian, A. A., 1978, Mechanisms of post-synaptic excitation in amphibian motoneurones, J. Physiol 279: 437–455.

    PubMed  CAS  Google Scholar 

  • Simmonds, M. A., and Pickles, H., 1978, Presynaptic action of GABA in isolated slices of cuneate nucleus and olfactory cortex, in: Iontophoresis and Transmitter Mechanisms in the Mammalian Central Nervous System ( R. W. Ryall and J. S. Kelly, eds.), Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Skrede, K. K., and Westgaard, R. H., 1971, The transverse hippocampal slice: a well-defined cortical structure maintained in vitro, Brain Res. 35: 589–593.

    PubMed  CAS  Google Scholar 

  • Sloviter, H. A., and Kamimoto, T., 1967, Erythrocyte substitute for perfusion of brain, Nature 216: 458.

    PubMed  CAS  Google Scholar 

  • Smith, T. G., Jr., Baker, J. L., and Gainer, H., 1975, Requirements for bursting pacemaker potential activity in molluscan neurones, Nature (London) 253: 450–452.

    CAS  Google Scholar 

  • Sonnhof, U., Linder, M., Grafe, F., and Krumnikl, G., 1975, Postsynaptic actions of glutamate on somatic and dendritic membrane areas of the lumbar motoneurones of the frog, Pflügers Arch. Physiol 355: 171.

    Google Scholar 

  • Spencer, W. A., and Kandel, E. R., 1961, Electrophysiology of hippocampal neurones. IV. Fast prepotentials, J. Neurophysiol 24: 272–285.

    Google Scholar 

  • Spencer, H. J., Gribkoff, V. K., Cotman, C. W., and Lynch, G. S., 1976, GDEE antagonism of iontophoretic amino acid excitations in the intact hippocampus and in the hippocampal slice preparation, Brain Res. 105: 471–481.

    PubMed  CAS  Google Scholar 

  • Spencer, J., Gribkoff, V. K., and Lynch, G. S., 1978, Distribution of acetylcholine, glutamate, and aspartate sensitivity over dendritic fields of hippocampal CA1 neurones, in: Iontophoresis and Transmitter Mechanism of the Mammalian Central Nervous System ( R. W. Ryall and J. S. Kelly, eds.), Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Stewart, W. W., 1978, Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalamide tracer, Cell 14: 741–759.

    PubMed  CAS  Google Scholar 

  • Takagi, M., and Yamamoto, C., 1981, The long-lasting inhibition recorded in vitro from the lateral nucleus of the amygdala, Brain Res. 206: 474–478.

    PubMed  CAS  Google Scholar 

  • Takahashi, T., 1978, Intracellular recording from visually identified motoneurones in rat spinal cord slices, Proc. R. Soc. London, Ser. B 202: 417–421.

    CAS  Google Scholar 

  • Teyler, T. J., 1980, Brain slice preparation. Hippocampus, Brain Res. Bull. 5: 391–403.

    PubMed  CAS  Google Scholar 

  • Thalmann, R. H., Peck, E. J., and Ayala, G. F., 1979, Biphasic response of pyramidal neurones to GABA iontophoresis in hippocampal slices, Soc. Neurosci. Abstr 5: 74.

    Google Scholar 

  • Traub, R. D., and Llinás, R., 1979, Hippocampal pyramidal cells: significance of dendritic ionic conductances for neuronal function and epileptogenesis, Neurophysiol. 42: 476–496.

    CAS  Google Scholar 

  • Turner, D. A., and Schwartzkroin, P. A., 1979, Membrane resistance and electrotonic decay in guinea-pig CA1 hippocampal pyramidal cells, Soc. Neurosci. Abstr 5: 505.

    Google Scholar 

  • Turner, D. A., and Schwartzkroin, P. A., 1980, Steady-state electrotonic analysis of intracellularly stained hippocampal neurones, J. Neurophysiol 44: 184–188.

    PubMed  CAS  Google Scholar 

  • Wanko, T., and Tower, D. B., 1964, Combined Morphological and Biochemical Studies of Incubated Slices of Cerebral Cortex, pp. 75–79, Harper and Row, New York.

    Google Scholar 

  • Wards, F., 1976, Regulation of neuronal properties by afferent connection. 1. Functional changes in snail neurones following section of presynaptic nerve fibres, Brain Res. 112: 91–102.

    Google Scholar 

  • Weight, F. F., and Votava, J., 1970, Slow synaptic excitation in sympathetic ganglion cells: evidence for synaptic inactivation of potassium conductance, Science 170: 755–758.

    PubMed  CAS  Google Scholar 

  • Weiler, M. H., Misgeld, U., Bak, I. J., and Jenden, D. J., 1979, Acetylcholine synthesis in rat neostriatal slices, Brain Res. 176: 401–406.

    PubMed  CAS  Google Scholar 

  • White, W. F., Nadler, J. V., and Cotman, C. W., 1978, A perfusion chamber for the study of CNS physiology and pharmacology in vitro, Brain Res. 152: 591–596.

    PubMed  CAS  Google Scholar 

  • White, W. F., Nadler, J. V., and Cotman, C. W., 1979, The effect of amino acid antagonists on synaptic transmission in the hippocampal formation in vitro, Brain Res. 164: 177–194.

    PubMed  CAS  Google Scholar 

  • Wieraszko, A., and Lynch, G., 1979, Stimulation-dependent release of possible transmitter substances from hippocampal slices studied with local perfusion, Brain Res. 160: 372–376.

    PubMed  CAS  Google Scholar 

  • Williams, J. T., and North, R. A., 1978, Inhibition of firing of myenteric neurones by somatostatin, Brain Res. 155: 165–168.

    PubMed  CAS  Google Scholar 

  • Wilson, W. A., and Goldner, M. M., 1975, Voltage clamping with a single microelectrode, J. Neurobiol 6: 411–422.

    PubMed  CAS  Google Scholar 

  • Wong, R. K. S., and Prince, D. A., 1978, Participation of calcium spikes during intrinsic burst firing in hippocampal neurones, Brain Res. 159: 385–390.

    PubMed  CAS  Google Scholar 

  • Wong, R. K. S., and Prince, D. A., 1979, Dendritic mechanisms underlying penicillin-induced epileptiform activity, Science 204: 1128–1231.

    Google Scholar 

  • Wong, R. K. S., Prince, D. A., and Basbaum, A. I., 1979, Intradendritic recordings from hippocampal neurones, Proc. Natl. Acad. Sci. USA 76: 986–990.

    PubMed  CAS  Google Scholar 

  • Woodward, N. R., and Lindstrom, S., 1977, A potential screening technique for neurotransmitters in the CNS: model studies in cat spinal cord, Brain Res. 137: 37–52.

    PubMed  CAS  Google Scholar 

  • Yamamoto, C., 1972a, Activation of hippocampal neurones by mossy fibre stimulation in thin brain sections in vitro, Exp. Brain Res. 14: 423–435.

    CAS  Google Scholar 

  • Yamamoto, C., 19726, Intracellular study of seizure-like after-discharges elicited in thin hippocampal sections in vitro, Exp. Neurol 35: 154–164.

    Google Scholar 

  • Yamamoto, C., 1974, Electrical activity recorded from thin sections of the lateral geniculate body, and the effects of 5-hydroxytryptamine, Exp. Brain Res. 19: 271–281.

    CAS  Google Scholar 

  • Yamamoto, C., and Chujo, T., 1978, Visualization of central neurones and recording of action potentials, Exp. Brain Res. 31: 299–301.

    CAS  Google Scholar 

  • Yamamoto, C., and Kawai, N., 1968, Generation of the seizure discharge in this sections from the guinea-pig brain in chloride-free medium in vitro, Jpn. J. Physiol. 18: 620–631.

    Google Scholar 

  • Yamamoto, C., and Matsui, S., 1976, Effect of stimulation of excitatory nerve tract on release of glutamic acid from olfactory cortex slices in vitro, J. Neurochem 26: 487–491.

    PubMed  CAS  Google Scholar 

  • Yamamoto, C., and McIlwain, H., 1966, Electrical activities in thin sections from the mammalian brain maintained in chemically defined media in vitro, J. Neurochem 13: 1333–1343.

    PubMed  CAS  Google Scholar 

  • Yamamoto, C., Bak, I. J., and Kurokawa, M., 1970, Ultrastructural changes associated with reversible and irreversible suppression of electrical activity in olfactory cortex slices, Exp. Brain Res. 11: 360–372.

    CAS  Google Scholar 

  • Yarom, Y., and Llinás, R., 1979, Electrophysiological properties of mammalian inferior olive neurone in in vitro brainstem slices and in vitro whole brain stem, Neurosci. Abstr 5: 109.

    Google Scholar 

  • Zieglgänsberger, W., and Champagnat, J., 1979, Cat spinal motoneurones exhibit topographic sensitivity to glutamate and glycine, Brain Res. 160: 95–104.

    PubMed  Google Scholar 

  • Zieglgänsberger, W., and Fry, J. P., 1978, Actions of opioids on single neurones, in: Developments in Opiate Research ( A. Henry, ed.), pp. 193–239, Marcel Dekker, New York and Basil.

    Google Scholar 

  • Zieglgänsberger, W., and Puil, E. A., 1973, Action of glutamic acid on spinal neurones, Exp. Brain. Res. 17: 35–49.

    Google Scholar 

  • Zieglgänsberger, W., French, E. D., Siggins, G. R., and Bloom, F. E., 1979, Opioid peptides may excite hippocampal pyramidal neurones by inhibiting adjacent inhibitory interneurones, Science 205: 415–417.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Kelly, J.S. (1982). Intracellular Recording from Neurons in Brain Slices in Vitro. In: Iversen, L.L., Iversen, S.D., Snyder, S.H. (eds) Handbook of Psychopharmacology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3452-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3452-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3454-5

  • Online ISBN: 978-1-4613-3452-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics