Skip to main content

Implementation of Interior-Point Methods for Large Scale Linear Programs

  • Chapter
Interior Point Methods of Mathematical Programming

Part of the book series: Applied Optimization ((APOP,volume 5))

Abstract

In the past 10 years the interior point methods (IPM) for linear programming have gained extraordinary interest as an alternative to the sparse simplex based methods. This has initiated a fruitful competition between the two types of algorithms which has led to very efficient implementations on both sides. The significant difference between interior point and simplex based methods is reflected not only in the theoretical background but also in the practical implementation. In this paper we give an overview of the most important characteristics of advanced implementations of interior point methods. First, we present the infeasible-primal-dual algorithm which is widely considered the most efficient general purpose IPM. Our discussion includes various algorithmic enhancements of the basic algorithm. The only shortcoming of the “traditional” infeasible-primal-dual algorithm is to detect a possible primal or dual infeasibility of the linear program. We discuss how this problem can be solved with the homogeneous and self-dual model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Adler, N. Karmarkar, M. G. C. Resende, and G. Veiga. Data structures and programming techniques for the implementation of Karmarkar’s algorithm.ORSA J. on Comput., 1 (2): 84–106, 1989.

    MATH  Google Scholar 

  2. E. D. Andersen. Finding all linearly dependent rows in large-scale linear programming.Optimization Methods and Software, 6: 219–227, 1995.

    Article  Google Scholar 

  3. E. D. Andersen and K. D. Andersen. Presolving in Linear Programming. Preprint 35, Dept. of Math, and Computer Sci., Odense University, 1993. To appear in Math. Programming.

    Google Scholar 

  4. E. D. Andersen and Y. Ye. Combining interior-point and pivoting algorithms for linear programming. Technical report, Department of Management Sciences, The University of Iowa, 1994. Available via anonymous ftp from ftp://col.biz.uiowa.edu/pub/papers/cross.ps.Z, to appear in Management Science.

    Google Scholar 

  5. K. D. Andersen. A modified Schur complement method for handling dense columns in interior point methods for linear programming. Technical report, Dept. of Math, and Computer Sci., Odense University, 1994. Submitted to ACM Transaction on Mathematical Software.

    Google Scholar 

  6. M. Arioli, J. W. Demmel, and I. S. Duff. Solving sparse linear systems with sparse backward error.SIAM J. Mat. Anal. Appl, 10 (2): 165–190, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Arioli, I. S. Duff, and P. P. M. de Rijk. On the augmented system approach to sparse least-squares problems.Numer. Math., 55: 667–684, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. R. Birge, R. M. Freund, and R. Vanderbei. Prior reduced fill-in solving equations in interior point algorithms.Oper. Res. Lett., 11: 195–198, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. E. Bixby. Progress in linear programming.ORSA J. on Comput., 6 (1): 15–22, 1994.

    MathSciNet  MATH  Google Scholar 

  10. R. E. Bixby and M. J. Saltzman. Recovering an optimal basis from an interior point solution.Oper. Res. Lett., 15 (4): 169–178, 1993.

    Article  MathSciNet  Google Scholar 

  11. A. Björk. Methods for sparse linear least squares problems. In J. R. Bunch and D. J. Rose, editors,Sparse Matrix Computation, pages 177–201. Academic Press INC., 1976.

    Google Scholar 

  12. A. L. Brearley, G. Mitra, and H. P. Williams. Analysis of mathematical programming problems prior to applying the simplex algorithm.Math. Programming, 15: 54–83, 1975.

    Article  MathSciNet  Google Scholar 

  13. J. R. Bunch and B. N. Parlett. Direct methods for solving symmetric indefinit systems of linear equations.SIAM J. Numer. Anal., 8: 639–655, 1971.

    Article  MathSciNet  Google Scholar 

  14. T. J. Carpenter, I. J. Lustig, J. M. Mulvey, and D. F. Shanno. Separable quadratic programming via a primal-dual interior point method and its use in a sequential procedure.ORSA J. on Comput., 5: 182–191, 1993.

    MathSciNet  MATH  Google Scholar 

  15. S. F. Chang and S. T. McCormick. A hierachical algorithm for making sparse matrices sparse.Math. Programming, 56: 1–30, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  16. I. C. Choi, C. L. Monma, and D. F. Shanno. Further Development of a Primal- Dual Interior Point Method.ORSA J. on Comput., 2 (4): 304–311, 1990.

    MATH  Google Scholar 

  17. E. Christiansen and K. O. Kortanek. Computation of the collapse state in limit analysis using the LP primal affine scaling algorithm.J. Comput. Appl. Math 34: 47–63, 1991.

    Article  MATH  Google Scholar 

  18. P. D. Domich, P. T. Boggs, J. E. Rogers, and C. Witzgall. Optimizing over three dimensional subspaces in an interior-point method for linear programming.Linear Algebra Appl, 152: 315–342, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  19. I. S. Duff, A. M. Erisman, and J. K. Reid.Direct methods for sparse matrices. Oxford University Press, New York, 1989.

    MATH  Google Scholar 

  20. I. S. Duff, N. I. M. Gould, J. K. Reid, J. A. Scott, and K. Turner. The factorization of sparse symmetric indefinite matrices.IMA J. Numer. Anal., 11: 181–204, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman. The Yale sparse matrix package, I. the symmetric code.Internat. J. Numer. Methods Engrg., 18: 1145–1151, 1982.

    Article  MATH  Google Scholar 

  22. A. S. El-Bakry, R. A. Tapia, and Y. Zhang. A study of indicators for identifying zero variables in interior-point methods.SIAM Rev, 36 (l): 45–72, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. V. Fiacco and G. P. McCormick.Nonlinear Programming: Sequential Unconstrained Minimization Techniques. John Wiley and Sons, New York, 1968.

    MATH  Google Scholar 

  24. J. J. H. Forrest and D. Goldfarb. Steepest-edge simplex algorithms for linear programming.Math. Programming, 57: 341–374, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. J. H. Forrest and J. A. Tomlin.Implementing the simplex method for optimization subroutine libraryIBM Systems J, 31 (1): 11–25, 1992

    Article  MATH  Google Scholar 

  26. R. Fourer and S. Mehrotra. Solving symmetric indefinite systems in an interior point method for linear programming.Math. Programming, 62: 15–40, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  27. K. R. Frisch. The logarithmic potential method of convex programming. Technical report, University Institute of Economics, Oslo, Norway, 1955.

    Google Scholar 

  28. D. M. Gay. Electronic mail distribution of linear programming test problems.COAL Newsletter, 13: 10–12, 1985.

    Google Scholar 

  29. A. George and J. W. -H. Liu.Computing Solution of Large Sparse Positive Definite Systems. Prentice-Hall, Englewood Cliffs, NJ, 1981.

    Google Scholar 

  30. A. George and J. W. -H. Liu. The evolution of the minimum degree ordering algorithmSIAM Rev, 31: 1–19, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  31. P. E. Gill, W. Murray, M. A. Saunders, J. A. Tomlin, and M. H. Wright. On the projected Newton barrier methods for linear programming and an equivalence to Karmarkar’ s projective method.Math. Programming, 36: 183–209, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  32. J. L. Goffin and J. P. Vial. Cutting planes and column generation techniques with the projective algorithm.J. Optim. Theory Appl., 65: 409–429, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  33. A. J. Goldman and A. W. Tucker. Polyhedral convex cones. In H. W. Kuhn and A. W. Tucker, editors,Linear Inequalities and related Systems, pages 19–40, Princeton, New Jersey, 1956. Princeton University Press.

    Google Scholar 

  34. A. J. Goldman and A. W. Tucker. Theory of linear programming. In H. W. Kuhn and A. W. Tucker, editors,Linear Inequalities and related Systems, pages 53–97, Princeton, New Jersey, 1956. Princeton University Press.

    Google Scholar 

  35. J. Gondzio. Splitting dense columns of constraint matrix in interior point methods for large scale linear programming.Optimization, 24: 285–297, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Gondzio. Multiple centrality corrections in a primal-dual method for linear programming. Technical Report 1994.20, Logilab, HEC Geneva, Section of Management Studies, University of Geneva, November 1994. Revised May 1995, to appear in Computational Optimization and Applications.

    Google Scholar 

  37. J. Gondzio. Presolve analysis of linear programs prior to applying the interior point method. Technical Report 1994.3, Logilab, HEC Geneva, Section of Management Studies, University of Geneva, 1994. Revised Dec. 1994, to appear in ORSA J. on Comp.

    Google Scholar 

  38. J. Gondzio. HOPDM (version 2.12) - A fast LP solver based on a primal-dual interior point method.European J. Oper. Res., 85: 221–225, 1995.

    Article  MATH  Google Scholar 

  39. H. J. Greenberg. The use of the optimal partition in a linear programming solution for postoptimal analysis.Oper. Res. Lett., 15 (4): 179–186, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  40. O. Güler and Y. Ye. Convergence behaviour of interior-point algorithms.Math. Programming, 60 (2): 215–228, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  41. A. J. Hoffman, M. Mannos, D. Sokolowsky, and N. Wiegman. Computational experience in solving linear programs.Journal of the Society for Industrial and Applied Mathematics, 1: 17–33, 1953.

    Article  MATH  Google Scholar 

  42. P. -F. Hung and Y. Ye. An asymptotical 0$$\[\left({\sqrt n L} \right)$$-iteration path-following linear programming algorithm that uses wide neighborhoods. Technical report, Department of Mathematics, The University of Iowa, March 1994. To appear in SIAM J. on Optimization.

    Google Scholar 

  43. B. Jansen, C. Roos, and T. Terlaky. An interior point approach to postoptimal and parametric analysis in linear programming. InInterior point methods. Eövös Loránd University, Department of Operations Research, H-1088 Budapest, Múzeum krt. 6–8., Hungary, 1992.

    Google Scholar 

  44. B. Jansen, C. Roos, T. Terlaky, and J. P. Vial. Primal-dual target following algorithms for linear programming. Technical Report 93–107, Faculty of Technical Mathematics and Informatics, Technical University Delft, Delft, The Netherlands, 1993.

    Google Scholar 

  45. B. Jansen, T. Terlaky, and C. Roos. The theory of linear programming: Skew symmetric self-dual problems and the central path.Optimization, 29: 225–233, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  46. N. K. Karmarkar. A polynomial-time algorithm for linear programming.Combinatorica, 4: 373–395, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  47. N. K. Karmarkar, J. C. Lagarias, L. Slutsman, and P. Wang. Power series variants of Karmarkar-type algorithms.ATjadeT Tech. J., 68: 20–36, 1989.

    MathSciNet  MATH  Google Scholar 

  48. M. Kojima, N. Megiddo, and S. Mizuno. A primal-dual infeasible-interior-point algorithm for linear programming.Math. Programming, 61: 263–280, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  49. M. Kojima, S. Mizuno, and A. Yoshise. A primal-dual interior point algorithm for linear proramming. In N. Megiddo, editor,Progress in Mathematical Programming: Interior-Point Algorithms and Related Methods, pages 29–47. Springer Verlag, Berlin, 1989.

    Google Scholar 

  50. J. W. -H. Liu. A generalized envelope method for sparse factorization by rowsACM Trans. Math. Software, 17 (1): 112–129, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  51. I. J. Lustig, R. E. Marsten, and D. F. Shanno. Computational experience with a primal-dual interior point method for linear programmingLinear Algebra Appl, 20: 191–222, 1991.

    Article  MathSciNet  Google Scholar 

  52. I. J. Lustig, R. E. Marsten, and D. F. Shanno. The interaction of algorithms and architectures for interior point methods. In P. M. Pardalos, editor,Advances in optimization and parallel computing, pages 190–205. Elsevier Sciences Publishers B.V., 1992.

    Google Scholar 

  53. I. J. Lustig, R. E. Marsten, and D. F. Shanno. On implementing Mehrotra’ s predictor-corrector interior-point method for linear programming.SIAM J. on Optim., 2 (3): 435–449, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  54. I. J. Lustig, R. E. Marsten, and D. F. Shanno. Interior point methods for linear programming: Computational state of the art.ORSA J. on Comput., 6 (1): 1–15, 1994.

    MathSciNet  MATH  Google Scholar 

  55. H. M. Markowitz.The elimination form of the inverse and its application to linear programmingManagement Sci, 3: 255–269, 1957.

    Article  MathSciNet  MATH  Google Scholar 

  56. I. Maros and Cs. Mészáros. The role of the augmented system in interior point methods. Technical Report TR/06/95, Brunei University, Department of Mathematics and Statistics, London, 1995.

    Google Scholar 

  57. K. A. McShane, C. L. Monma, and D. F. Shanno. An implementation of a primal-dual method for linear programming.ORSA J. on Comput., l(2): 70–83, 1989.

    Google Scholar 

  58. N. Megiddo. Pathways to the optimal set in linear programming. In N. Megiddo, editor,Progress in Mathematical Programming: Interior-Point Algorithms and Related Methods, pages 131–158. Springer Verlag, 1989.

    Google Scholar 

  59. N. Megiddo. On finding primal- and dual- optimal basesORSA J. on Comput 3 (l): 63–65, 1991.

    MathSciNet  MATH  Google Scholar 

  60. S. Mehrotra. Handling free variables in interior methods. Technical Report 91–06, Department of Industrial Engineering and Managment Sciences, Northwestern University, Evanston, USA., March 1991.

    Google Scholar 

  61. S. Mehrotra. High order methods and their performance. Technical Report 90–16R1, Department of Industrial Engineering and Managment Sciences, Northwestern University, Evanston, USA., 1991.

    Google Scholar 

  62. S. Mehrotra. On the implementation of a primal-dual interior point method.SIAM J. on Optim., 2 (4): 575–601, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  63. O. du Merle, J. L. Goffin, and J. P. Vial. A short note on the comparative behaviour of Kelley’s cutting plane method and the analytic center cutting plane method. Technical Report 1996. 4, Logilab, HEC Geneva, Section of Management Studies, University of Geneva, January 1996.

    Google Scholar 

  64. Cs. Mészáros. Fast Cholesky factorization for interior point methods of linear programming. Technical report, Computer and Automation Institute, Hungarian Academy of Sciences, Budapest, 1994. To appear in Computers jade Mathematics with Applications.

    Google Scholar 

  65. Cs. Mészáros. The “inexact” minimum local fill-in ordering algorithm. Working paper WP 95–7, Computer and Automation Institute, Hungarian Academy of Sciences, Budapest, 1995.

    Google Scholar 

  66. Cs. Mészáros. The augmented system variant of IPMs in two-stage stochastic linear programming computation. Working paper WP 95–1, Computer and Automation Institute, Hungarian Academy of Sciences, Budapest, 1995.

    Google Scholar 

  67. J.L. NazarethComputer Solution of Linear Programs. Oxford University Press, New York, 1987.

    Google Scholar 

  68. J. von Neumann. On a maximization problem. Technical report,Institute for Advanced Study (Princeton, NJ, USA), 1947.

    Google Scholar 

  69. E. Ng and B. W. Peyton. A supernodal Cholesky factorization algorithm for shared-memory multiprocessors.SIAM J. Sci. Statist. Comput., 14(4):761–769

    Article  MathSciNet  MATH  Google Scholar 

  70. L. Portugal, F. Bastos, J. Judice, J. Paixõ, and T. Terlaky. An investigation of interior point algorithms for the linear transportation problems. Technical Report 93–100, Faculteit der Technische Wiskunde en Informatica, Technische Universiteit Delft, Nederlands, 1993.

    Google Scholar 

  71. M. G. C. Resende and G. Veiga. An efficient implementation of a network interior point method. Technical report,AT&T Bell Laboratores, Murray Hill, NJ, USA, February 1992.

    Google Scholar 

  72. E. Rothberg and A. Gupta. Efficient Sparse Matrix Factorization on High- Performance Workstations-Exploiting the Memory Hierarchy.ACM Trans. Math. Software, 17 (3): 313–334, 1991.

    Article  MATH  Google Scholar 

  73. G. Sonnevend, J. Stoer, and G. Zhao. Subspace methods for solving linear programming problems. Technical report, Institut fur Angewandte Mathematik und Statistic, Universitat Wurzburg, Wurzburg, Germany, January 1994.

    Google Scholar 

  74. G.W. Stewart. Modifying pivot elements in Gaussian elimination.Math. Comp., 28: 537–542, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  75. G. W. Stewart. On scaled projections and pseudoinversesLinear Algebra Appl, 112: 189–193, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  76. R. Subramanian, R. P. S. Scheff Jr., J. D. Qillinan, D. S. Wiper, and R. E. Marsten. Coldstart: Fleet assigment at Delta Air Lines.Interfaces, 24(1)

    Google Scholar 

  77. U. H. Suhl. MPOS — Mathematical optimization systemEuropean J. Oper. Res, 72 (2): 312–322, 1994.

    Article  MATH  Google Scholar 

  78. U. H. Suhl and L. M. Suhl. Computing sparse LU factorizations for large-scale linear programming basesORSA J. on Comput, 2 (4): 325–335, 1990.

    MATH  Google Scholar 

  79. W. F.Tinney and J. W. Walker.Direct solution of sparse network equations by optimally ordered triangular factorization. InProceedings of IEEE,volume 55, pages 1801–1809. 1967.

    Google Scholar 

  80. A. W. Tucker. Dual systems of homogeneous linear relations. InLinear inequalities and related systems, pages 3–18. Princeton University Press, Princeton, NJ, 1956.

    Google Scholar 

  81. K. Turner.Computing projections for Karmarkar algorithmLinear Algebra Appl, 152: 141–154, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  82. R. J. Vanderbei. Splitting dense columns in sparse linear systemsLinear Algebra Appl, 152: 107–117, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  83. R. J. Vanderbei and T. J. Carpenter. Symmetric indefinite systems for interior point methodsMath. Programming, 58: 1–32, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  84. X. Xu. An O$$\[\left({\sqrt n L} \right)$$-iteration large-step infeasible path-following algorithm for linear programming. Technical report, College of Business Administration, The University of Iowa, Iowa City, IA 52242, August 1994.

    Google Scholar 

  85. X. Xu. On the implementation of a homogeneous and self-dual linear programming algorithm. Technical report, 1994. Manuscript.

    Google Scholar 

  86. X. Xu, P.-F. Hung, and Y. Ye. A simplified homogeneous and self-dual linear programming algorithm and its implementation. Technical report, Department of Management Sciences, The University of Iowa, 1993.

    Google Scholar 

  87. X. Xu and Y. Ye. A generalized homogeneous and self-dual algorithm for linear programmingOper. Res. Lett., 17: 181–190, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  88. M. Yannakakis. Computing the minimum fill-in is NP-completeSIAM J. Algebraic Discrete Methods, pages 77–79, 1981.

    Google Scholar 

  89. Y. Ye. On the finite convergence of interior-point algorithms for linear programmingMath. Programming, 57: 325–335, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  90. Y. Ye, M. J. Todd, and S. Mizuno. An O$$\[\left({\sqrt n L} \right)$$- iteration homogeneous and self-dual linear programming algorithm.Math. Oper. Res., 19: 53–67, 1994.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Anderson, E.D., Gondzio, J., Mészáros, C., Xu, X. (1996). Implementation of Interior-Point Methods for Large Scale Linear Programs. In: Terlaky, T. (eds) Interior Point Methods of Mathematical Programming. Applied Optimization, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3449-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3449-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3451-4

  • Online ISBN: 978-1-4613-3449-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics