Skip to main content

Interior Point Methods for Combinatorial Optimization

  • Chapter
Interior Point Methods of Mathematical Programming

Part of the book series: Applied Optimization ((APOP,volume 5))

Abstract

Research on using interior point algorithms to solve combinatorial optimization and integer programming problems is surveyed. This paper discusses branch and cut methods for integer programming problems, a potential reduction method based on transforming an integer programming problem to an equivalent nonconvex quadratic programming problem, interior point methods for solving network flow problems, and methods for solving multicommodity flow problems, including an interior point column generation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. K. Ahuja, T. L. Magnanti, and J. B. OrlinNetwork Flows. Prentice Hall, Englewood Cliffs, New Jersey, 1993.

    Google Scholar 

  2. F. Alizadeh. Interior point methods in semidefmite programming with applications to combinatorial optimization.SIAM Journal on Optimization, 5 (1): 13–51, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  3. K. M. Anstreicher. A combined phase I — phase II scaled potential algorithm for linear programming. Mathematical Programming, 52: 429–439, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  4. K. M. Anstreicher. On Vaidya’ s volumetric cutting plane method for convex programming. Technical report, Department of Management Sciences, University of Iowa, Iowa City, Iowa 52242, September 1994.

    Google Scholar 

  5. D. Applegate, R. Bixby, V. Chvatal, and W. Cook. Finding cuts in the TSP (a preliminary report). Technical report, Mathematics, AT&T Bell Laboratories, Murray Hill, NJ, 1994.

    Google Scholar 

  6. D. S. Atkinson and P. M. Vaidya. A cutting plane algorithm for convex programming that uses analytic centers.Mathematical Programming, 69: 1–43, 1995.

    MathSciNet  MATH  Google Scholar 

  7. H. van Benthem, A. Hipolito, B. Jansen, C. Roos, T. Terlaky, and J. Warners. Radio link frequency assignment project, Technical annex T-2.3. 2: Potential reduction methods. Technical report, Faculty of Technical Mathematics and Informatics, Delft University of Technology, Delft, The Netherlands, 1995.

    Google Scholar 

  8. D. Bertsimas and J. B. Orlin. A technique for speeding up the solution of the Lagrangean dual.Mathematical Programming, 63: 23–45, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. R. Birge, R. M. Freund, and R. J. Vanderbei. Prior reduced fill-in in solving equations in interior point algorithms.Operations Research Letters, 11: 195–198, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  10. B. BorchersImproved branch and bound algorithms for integer programming. PhD thesis, Rensselaer Polytechnic Institute, Mathematical Sciences, Troy, NY, 1992.

    Google Scholar 

  11. B. Borchers and J. E. Mitchell. Using an interior point method in a branch and bound algorithm for integer programming. Technical Report 195, Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, March 1991. Revised July 7, 1992.

    Google Scholar 

  12. CPLEX Optimization Inc. CPLEX Linear Optimizer and Mixed Integer Optimizer. Suite 279, 930 Tahoe Blvd. Bldg 802, Incline Village, NV 89541.

    Google Scholar 

  13. M. Davis and H. Putnam. A computing procedure for quantification theory.J. Assoc. Comput. Mach., 7: 201–215, 1960.

    Article  MathSciNet  MATH  Google Scholar 

  14. DIM ACS.The first DIMACS international implementation challenge: The benchmark experiments. Technical report, DIMACS, RUTCOR, Rutgers University, New Brunswick, NJ, 1991.

    Google Scholar 

  15. J. Edmonds. Maximum matching and a polyhedron with 0,1 verticesJournal of Research National Bureau of Standards, 69B. T25–130, 1965.

    Google Scholar 

  16. J. Edmonds.Paths,trees and flowersCanadian Journal of Mathematics, 17: 449 - 467, 1965.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. S. El-Bakry, R. A. Tapia, and Y. Zhang. A study of indicators for identifying zero variables in interior-point methods.SIAM Review, 36: 45–72, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  18. Uriel Feige and Michel X. Goemans. Approximating the value of two prover proof systems, with applications to MAX 2SAT and MAX DICUT. InProceedings of the Third Israel Symposium on Theory of Computing and Systems, 1995.

    Google Scholar 

  19. G. de Ghellinck and J.-P. Vial. A polynomial Newton method for linear programmingAlgorithmica, 1: 425–453, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  20. Michel X. Goemans and David P. Williamson. Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming.J. Assoc. Comput. Mach., 1994. (To appear). A preliminary version appeared in Proc. 26th Annual ACM Symposium on Theory of Computing.

    Google Scholar 

  21. J.-L. Goffin, J. Gondzio, R. Sarkissian, and J.-P. Vial. Solving nonlinear multicommodity network flow problems by the analytic center cutting plane method. Technical report, GERAD, Faculty of Management, McGill University, Montreal, Quebec, Canada H3A 1G5, October 1994.

    Google Scholar 

  22. J.-L. Goffin, A. Haurie, and J.-P. Vial. Decomposition and nondifferentiable optimization with the projective algorithm.Management Science, 38: 284–302, 1992.

    Article  MATH  Google Scholar 

  23. J.-L. Goffin, Z.-Q. Luo, and Y. Ye. On the complexity of a column generation algorithm for convex or quasiconvex problems. InLarge Scale Optimization: The State of the Art. Kluwer Academic Publishers, 1993.

    Google Scholar 

  24. J.-L. Goffin, Z.-Q. Luo, and Y. Ye. Complexity analysis of an interior cutting plane method for convex feasibility problems. Technical report, Faculty of Management, McGill University, Montreal, Quebec, Canada, June 1994.

    Google Scholar 

  25. J.-L. Goffin and J.-P. Vial. Cutting planes and column generation techniques with the projective algorithmJournal of Optimization Theory and Applications, 65 (3): 409–429, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  26. R. E. Gomory. An algorithm for integer solutions to linear programs. In R. L. Graves and P. Wolfe, editorsRecent Advances in Mathematical Programming, pages 269–302. McGraw-Hill, New York, 1963.

    Google Scholar 

  27. M. Grötschel and O. Holland. Solving matching problems with linear programmingMathematical Programming, 33: 243–259, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Grötschel, M. Jiinger, and G. Reinelt. A cutting plane algorithm for the linear ordering problem.Operations Research, 32: 1195–1220, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Grötschel, L. Lovasz, and A. SchrijverGeometric Algorithms and Combinatorial Optimization. Springer-Verlag, Berlin, Germany, 1988.

    Google Scholar 

  30. O. Güler, D. den Hertog, C. Roos, T. Terlaky, and T. Tsuchiya. Degeneracy in interior point methods for linear programming: A survey.Annals of Operations Research, 46: 107–138, 1993.

    Article  MathSciNet  Google Scholar 

  31. D. den Hertog.Interior Point Approach to Linear, Quadratic and Convex Programming, Algorithms and Complexity. PhD thesis, Faculty of Mathematics and Informatics, TU Delft, NL-2628 BL Delft, The Netherlands, September 1992.

    Google Scholar 

  32. D. den Hertog, C. Roos, and T. Terlaky. A build-up variant of the path- following method for LPOperations Research Letters, 12: 181–186, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  33. IBMIBM Optimization Subroutine Library Guide and Reference,August 1990. Publication number SC23–0519–1.

    Google Scholar 

  34. K. L. Jones, I. J. Lustig, J. M. Farvolden, and W. B. Powell. Multicommodity network flows — the impact of formulation on decomposition.Mathematical Programming, 62: 95–117, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Jünger, G. Reinelt, and S. Thienel. Practical problem solving with cutting plane algorithms in combinatorial optimization. Technical Report 94.156, Institut für Informatik, Universität zu Köln, Pohligstraße 1, D-50969 Köln, Germany, March 1994.

    Google Scholar 

  36. A. P. KamathEfficient Continuous Algorithms for Combinatorial Optimization. PhD thesis, Department of Computer Science, Stanford University, Palo Alto, CA, February 1995.

    Google Scholar 

  37. A. P. Kamath and N. K. Karmarkar. A continuous approach to compute upper bounds in quadratic maximization problems with integer constraints. In C. A. Floudas and P. M. Pardalos, editors,Recent Advances in Global Optimization, Princeton Series in Computer Science, pages 125 - 140. Princeton University Press, Princeton, NJ, USA, 1992.

    Google Scholar 

  38. A. P. Kamath and N. K. Karmarkar. AnO(nL) iteration algorithm for computing bounds in quadratic optimization problems. In P. M. Pardalos, editor,Complexity in Numerical Optimization, pages 254–268. World Scientific Publishing Company, Singapore (USA address: River Edge, NJ 07661 ), 1993.

    Chapter  Google Scholar 

  39. A. P. Kamath, N. K. Karmarkar, and K. G. Ramakrishnan. Computational and complexity results for an interior point algorithm on multi-commodity flow problem. Technical report, Department of Computer Science, Stanford University, Palo Alto, CA, 1993.

    Google Scholar 

  40. A. P. Kamath, N. K. Karmarkar, K. G. Ramakrishnan, and M. G. C. Resende. A continuous approach to inductive inference.Mathematical Programming, 57: 215–238, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  41. N. K. Karmarkar. A new polynomial-time algorithm for linear programmingCombinatorica, 4: 373 - 395, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  42. N. K. Karmarkar and K. G. Ramakrishnan. Computational results of an interior point algorithm for large scale linear programming.Mathematical Programming, 52: 555–586, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  43. N. K. Karmarkar,M. G. C. Resende, and K. G. Ramakrishnan. An interior point algorithm to solve computationally difficult set covering problems.Mathematical Programming, 52: 597–618, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  44. R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher, editorsComplexity of Computer Computations, pages 85–103. Plenum Press, New York, 1972.

    Google Scholar 

  45. D. Klingman, A. Napier, and J. Stutz. Netgen: A program for generating large scale capacitated assignment, transportation, and minimum cost network flow problems.Management Science, 20: 814–821, 1974.

    Article  MATH  Google Scholar 

  46. A. H. Land and A. G. Doig. An automatic method of solving discrete programming problemsEconometrica, 28: 497–520, 1960.

    Article  MathSciNet  MATH  Google Scholar 

  47. E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, editors.The Traveling Salesman Problem. John Wiley, New York, 1985.

    MATH  Google Scholar 

  48. Z.-Q. Luo. Analysis of a cutting plane method that uses weighted analytic center and multiple cuts. Technical report, Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, L8S 4L7, Canada, September 1994.

    Google Scholar 

  49. I. J. Lustig, R. E. Marsten, and D. F. Shanno. On implementing Mehrotra’ s predictor-corrector interior point method for linear programming.SIAM Journal on Optimization, 2: 435–449, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  50. I. J. Lustig, R. E. Marsten, and D. F. Shanno. Interior point methods for linear programming: Computational state of the art.ORSA Journal on Computing, 6(1): 1–14, 1994. See also the following commentaries and rejoinder.

    MathSciNet  MATH  Google Scholar 

  51. N. Megiddo. On finding primal- and dual-optimal bases.ORSA Journal on Computing, 3: 63–65, 1991.

    MathSciNet  MATH  Google Scholar 

  52. S. Mehrotra. On the implementation of a (primal-dual) interior point method.SIAM Journal on Optimization, 2 (4): 575–601, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  53. M. MinouxMathematical Programming:Theory and Algorithms. Wiley, New York, 1986.

    MATH  Google Scholar 

  54. J. E. MitchellKarmarkar’ s Algorithm and Combinatorial Optimization ProblemsPhD thesis, School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY, 1988.

    Google Scholar 

  55. J. E. Mitchell. Fixing variables and generating classical cutting planes when using an interior point branch and cut method to solve integer programming problems. Technical Report 216, Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180–3590, October 1994.

    Google Scholar 

  56. J. E. Mitchell. An interior point column generation method for linear programming using shifted barriersSIAM Journal on Optimization, 4: 423–440, May 1994.

    Article  MathSciNet  MATH  Google Scholar 

  57. J. E. Mitchell and B. Borchers. Solving real-world linear ordering problems using a primal-dual interior point cutting plane method. Technical Report 207, Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180–3590, March 1993. To appear inAnnals of OR.

    Google Scholar 

  58. J. E. Mitchell and S. Ramaswamy. An extension of Atkinson and Vaidya’ s algorithm that uses the central trajectory. Technical Report 37–93–387, DSES, Rensselaer Polytechnic Institute, Troy, NY 12180–3590, August 1993.

    Google Scholar 

  59. J. E. Mitchell and M. J. Todd. Solving combinatorial optimization problems using Karmarkar’ s algorithmMathematical Programming, 56: 245–284, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  60. S. Mizuno, M. Kojima, and M.J. Todd. Infeasible-interior-point primal-dual potential-reduction algorithms for linear programming.SIAM Journal on Optimization, 5: 52–67, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  61. G. L. Nemhauser and L. A. WolseyInteger and Combinatorial Optimization.John Wiley, New York, 1988.

    MATH  Google Scholar 

  62. G. L. Nemhauser and L. A. Wolsey. Integer programming. In G. L. Nemhauser et al., editorOptimization, chapter 6, pages 447–527. North-Holland, 1989.

    Google Scholar 

  63. P. M. Pardalos and S. A. Vavasis. Quadratic programming with one negative eigenvalue isNP-hard.Journal of Global Optimization, 1: 15–23, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  64. R. G. Parker and R. L. RardinDiscrete Optimization.Academic Press, San Diego, CA 92101, 1988.

    MATH  Google Scholar 

  65. L. Portugal, F. Bastos, J. Júdice, J. Paixao, and T. Terlaky. An investigation of interior point algorithms for the linear transportation problem. Technical report, Department of Mathematics, University of Coimbra, Coimbra, Portugal, 1993. To appear inSIAM J. Sci. Computing.

    Google Scholar 

  66. L. Portugal, M. Resende, G. Veiga, and J. Júdice. A truncated primal-infeasible dual-feasible network interior point method. Technical report, ATjadeT Bell Laboratories, Murray Hill, Jew Jersey, 1994.

    Google Scholar 

  67. S. Ramaswamy and J. E. Mitchell. On updating the analytic center after the addition of multiple cuts. Technical Report 37–94–423, Dept. of Decision Sciences and Engg. Systems, Rensselaer Polytechnic Institute, Troy, NY 12180, October 1994.

    Google Scholar 

  68. S. Ramaswamy and J. E. Mitchell. A long step cutting plane algorithm that uses the volumetric barrier. Technical report, Dept. of Decision Sciences and Engg. Systems, Rensselaer Polytechnic Institute, Troy, NY 12180, June 1995.

    Google Scholar 

  69. M. G. C. Resende and P. M. Pardalos. Interior point algorithms for network flow problems. Technical report, AT&T Bell Laboratories, Murray Hill, New Jersey 07974–2070, 1994. To appear inAdvances in Linear and Integer Programming, J. E. Beasley, ed., Oxford University Press, 1995.

    Google Scholar 

  70. M. G. C. Resende and G. Veiga. An efficient implementation of a network interior point method. In D.S. Johnson and C.C. McGeogh, editors,Network Flows and Matching:First DIMACS Implementation Challenge,, pages 299–348. American Mathematical Society, 1993. DIMACS Series on Discrete Mathematics and Theoretical Computer Science, vol. 12.

    Google Scholar 

  71. M. G. C. Resende and G. Veiga. An implementation of the dual affine scaling algorithm for minimum cost flow on bipartite uncapacitated networks.SIAM Journal on Optimization, 3: 516–537, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  72. C. Roos and J. P. Vial. A polynomial method of approximate centers for linear programming.Mathematical Programming, 54: 295–305, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  73. C.-J. Shi, A. Vannelli, and J. Vlach. An improvement on Karmarkar’ s algorithm for integer programming.COAL Bulletin, 21: 23–28, November 1992.

    Google Scholar 

  74. P. M. Vaidya. A new algorithm for minimizing convex functions over convex sets. InProceedings of the 30th Annual IEEE Symposium on Foundations of Computer Science, pages 338–343, Los Alamitos, CA, 1989. IEEE Computer Press. To appear inMathematical Programming.

    Google Scholar 

  75. J. P. Warners. A potential reduction approach to the radio link frequency assignment problem. Master’ s thesis, Faculty of Technical Mathematics and Informatics, Delft University of Technology, Delft, The Netherlands, 1995.

    Google Scholar 

  76. X. Xu, P. F. Hung, and Y. Ye. A simplified homogeneous and self-dual linear programming algorithm and its implementation. Technical report, College of Business Administration, The University of Iowa, Iowa City, Iowa 52242, September 1993.

    Google Scholar 

  77. X. Xu and Y. Ye. A generalized homogeneous and self-dual algorithm for linear programming.Operations Research Letters, 17: 181–190, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  78. G. Xue and Y. Y.. An efficient algorithm for minimizing a sum of Euclidean norms with applications. Technical report, Department of Computer Science and Electrical Engineering, University of Vermont, Burlington, VT 05405–0156, June 1995.

    Google Scholar 

  79. Y. Ye. On an affine scaling algorithm for nonconvex quadratic programming.Mathematical Programming, 56: 285–300, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  80. Y. Ye. Complexity analysis of the analytic center cutting plane method that uses multiple cuts. Technical report, Department of Management Sciences, The University of Iowa, Iowa City, Iowa 52242, September 1994.

    Google Scholar 

  81. Y. Ye, M. J. Todd, and S. Mizuno. AnO$$\[\left({\sqrt n L} \right)$$ -iteration homogeneous and self-dual linear programming algorithm.Mathematics of Operations Research, 19: 53–67, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  82. Y. Zhang. On the convergence of a class of infeasible interior-point methods for the horizontal linear complementarity problem.SIAM Journal on Optimization, 4 (l): 208–227, 1994.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Mitchell, J.E. (1996). Interior Point Methods for Combinatorial Optimization. In: Terlaky, T. (eds) Interior Point Methods of Mathematical Programming. Applied Optimization, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3449-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3449-1_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3451-4

  • Online ISBN: 978-1-4613-3449-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics