Advertisement

# The Shape of the Symmetric Solution Set

• Götz Alefeld
• Vladik Kreinovich
• Günter Mayer
Chapter
Part of the Applied Optimization book series (APOP, volume 3)

## Abstract

We give a new deduction of the set of inequalities which characterize the solution set S of real linear systems Ax = b with the n × n coefficient matrix A varying between a lower bound $$\underline A$$ and an upper bound $$\overline A$$, and with b similarly varying between $$\underline b$$ and $$\overline b$$. The idea of this deduction can also be used to construct a set of inequalities which describe the so-called symmetric solution set S sym, i.e., the solution set of Ax = b with A = A T varying between the bounds $$\underline A = {\underline A ^T}$$ and $$\overline A = {\overline A ^T}.$$ This is the main result of our paper. We show that in each orthant S sym is the intersection of S with sets of which the boundaries are quadrics.

## Preview

Unable to display preview. Download preview PDF.

## References

1. 
G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press, N.Y., 1983.
2. 
G. Alefeld and G. Mayer, “On the Symmetric and Unsymmetric Solution Set of Interval Systems”, SIAM J. Matrix Anal Appl, 1995 (to appear).Google Scholar
3. 
H. Beeck, “Über Struktur und Abschätzungen der Lösungsmenge von linearen Gleichungssystemen mit Intervallkoeffizienten”, Computing, 1972, Vol. 10, pp. 231–244.
4. 
D. J. Hartfiel, “Concerning the Solution Set of Ax = b where P A Q and p b q ”Numer. Math., 1980, Vol. 35, p. 355–359.
5. 
A. Neumaier, Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, 1990.
6. 
W. Oettli and W. Prager, “Compatibility of Approximate Solution of Linear Equations with Given Error Bounds for Coefficients and Right-hand Sides”, Numer. Math., 1964, Vol. 6, pp. 405–409.
7. 
J. Rohn, “Interval Linear Systems”, Freiburg er Intervall-Berichte, 1984, Vol. 84 /7, pp. 33–58.Google Scholar
8. 
A. Seidenberg, “A New Decision Method for Elementary Algebra”, Annals of Math., 1954, Vol. 60, pp. 365–374.
9. 
A. Tarski, A Decision Method for Elementary Algebra and Geometry, 2nd ed., Berkeley and Los Angeles, 1951.

## Copyright information

© Kluwer Academic Publishers 1996

## Authors and Affiliations

• Götz Alefeld
• 1
• Vladik Kreinovich
• 2
• Günter Mayer
• 3
1. 1.Institut für Angewandte MathematikUniversität KarlsruheKarlsruheGermany
2. 2.Department of Computer ScienceUniversity of Texas at El PasoEl PasoUSA
3. 3.Fachbereich MathematikUniversität RostockRostockGermany