Advertisement

The Use of Ordinary Differential Equations in Quadratic Maximization with Integer Constraints

  • Pierluigi Maponi
  • Maria Cristina Recchioni
  • Francesco Zirilli
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 7)

Abstract

We consider the problem of maximizing a quadratic function on the set { −1, l}n. This problem is related to some graph partitioning problems. We propose a path following method to compute an upper bound to the previous maximization problem. Numerical implementation of the proposed method and related numerical experience are presented.

Keywords

Quadratic maximization problems Nonlinear Programming NP-hard problems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Garey, M.R., Johnson, D.S., “Computers and Intractability: A Guide to the Theory of NP-Completeness,” W.H. Freeman, San Francisco, 1979.Google Scholar
  2. 2.
    Garey, M.R., Johnson, D.S., Stockmejer, L., “Some Simplified NP complete Graph Problems,” Theoretical Computer Science 1, 1976, pp. 237 - 267.Google Scholar
  3. 3.
    Pardalos, P.M., Wolkowicz, H., “Quadratic Assignment and Related Problems,” DIM ACS Series, American Mathematical Society 16, 1994.Google Scholar
  4. 4.
    Pardalos, P.M., Phillips, A.T., Rosen, J.B.,“Topics in Parallel Computing in Mathematical Programming,” Science Press, 1992.Google Scholar
  5. 5.
    Zirilli, F., “The Use of Ordinary Differential Equations in the Solution of Non Linear Systems of Equations,” Nonlinear Optimization, 19S1, M.T.D. Powell, Ed., Academic Press, New York. 19S2, pp. 39–7.Google Scholar
  6. 6.
    Kamath, A., Karmarkar, N., “A Continuous Approach to Compute Upper Bound in Quadratic Maximization Problems with Integer Constraints,” Recent Advances in Global Optimization, C.A. Floudas and P.M. Pardalos, Eds., Princeton University Press, Princeton N.J. ( USA ), 1991, pp. 125–140.Google Scholar
  7. 7.
    Herzel, S., Recchioni, M.C., Zirilli, F.,“ A Quadraticaliy Convergent Method for Linear Programming, ” Linear Algebra and Its Appl., 152, 1991, pp. 255–289.Google Scholar
  8. 8.
    Pardalos, P.M .,“Construction of Test Problems in Quadratic Bivalent Programming,” ACM Transactions on Mathematical Software 17, 1991, pp.74–87.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Pierluigi Maponi
    • 1
  • Maria Cristina Recchioni
    • 2
  • Francesco Zirilli
    • 3
  1. 1.Dipartimento di Matematica e FisicaUniversià di CamerinoCamerinoItaly
  2. 2.Istituto di Matematica e StatisticaUniversità di AnconaAnconaItaly
  3. 3.Dipartimento di Matematica “G.Castelnuovo”Università di Roma “La Sapienza”RomaItaly

Personalised recommendations