Skip to main content

Discrete Optimization using String Encodings for the Synthesis of Complete Chemical Processes

  • Chapter

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 7))

Abstract

The use of discrete programming techniques for the synthesis of process flowsheets in chemical engineering is a well established approach. Recently, improvements in the basic algorithms have been made to deal with the generation of complete processes, including heat exchange networks and processes with reactors, absorbers, flash units, etc. This paper describes a new approach to the use of dynamic programming using string encodings both for subproblem definition and for solution description. These encodings, combined with the use of dynamic hash tables, are used to implement a dynamic programming based optimization algorithm for the synthesis of chemical processes. The implementation shows an increase in both efficiency and usefulness.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Bañares-Alcántara and H. M. S. Lababidi, Design Support Systems for Process Engineering — II. KBDS: An Experimental Prototype, Computers chem. Engng, 19, 3, pp. 279–301 (1995).

    Article  Google Scholar 

  2. G. H. Ballinger, R. Bañares-Alcántara, D. Costello, E. S. Fraga, J. King, J. Krabbe, D. M. Laing, R. C. McKinnel, J. W. Ponton, N. Skilling, and M. W. Spenceley, Developing an Environment for Creative Process Design, Chemical Engineering Research & Design, 72, A3, pp. 316–324 (1994).

    Google Scholar 

  3. A. Aggarwal and C. A. Floudas, Synthesis of Heat Integrated Nonsharp Distillation Sequences, Computers chem. Engng, 16, 2, pp. 89–108 (1992).

    Article  Google Scholar 

  4. M. A. Duran and I. E. Grossman, Simultaneous Optimization and Heat Integration of Chemical Processes, AIChE J 32, p. 123 (1986).

    Article  Google Scholar 

  5. C. A. Floudas and G. E. Paules IV, A Mixed-Integer Nonlinear Programming Formulation for the Synthesis of Heat-integrated Distillation Sequences, Computers chem. Engng, 12, 6, pp. 531–546 (1988).

    Article  Google Scholar 

  6. N. Nishida, G. Stephanopolous, and A. W. Westerberg, A Review of Process Synthesis, AIChE 27, 3, pp. 321–351 (1981).

    Article  Google Scholar 

  7. J. E. Hendry and R. R. Hughes, Generating separation process flowsheets, Chem. Eng. Prog., 68 (6), pp. 71–76 (1972).

    Google Scholar 

  8. W. R. Johns and D. Romero, The Automated Generation and Evaluation of Process Flowsheets, Computers chem. Engng, 3, pp. 251–260 (1979).

    Article  Google Scholar 

  9. E. S. Fraga and K. I. M. McKinnon, CHiPS: A Process Synthesis Package, Chemical Engineering Research & Design, 72, A3, pp. 389–394 (1994).

    Google Scholar 

  10. C. Stair and E. S. Fraga, Optimization of Unit Operating Conditions for Heat Integrated Processes Using Genetic Algorithms, Proc. 1995 I.Chem.E. Research Event, pp. 95–97, Institution of Chemical Engineering, Rugby, U.K. (1995).

    Google Scholar 

  11. N. S. Dhallu and W. R. Johns, Synthesis of Distillation Trains with Heat Integration, I. Chem. E. Symp. Series, 109, pp. 23–42 (1988).

    Google Scholar 

  12. E. S. Fraga and K. I. M. McKinnon, The Use of Dynamic Programming with Parallel Computers for Process Synthesis, Computers chem. Engng, 18, 1, pp. 1–13 (1994).

    Article  Google Scholar 

  13. E. S. Fraga and K. I. M. McKinnon, Portable Code for Process Synthesis Using Workstation Clusters and Distributed Memory Multicomputers, Computers chem. Engng, 19, 6 /7, pp. 759–773 (1995).

    Google Scholar 

  14. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall International, Inc., London (1978).

    Google Scholar 

  15. P.-A. Larson, Dynamic Hashing, Comm. ACM, pp. 446–457 (1988).

    Google Scholar 

  16. E. Bartel, C Code Implementation of a Dynamic Hashing Algorithm, Institut fuer Informatik, TU Muenchen, Muenchen, Germany (1993). Available via Internet, URL ftp://ftp.inria.fr/prog/libraries/dynhash-1.0.shar.gz.

    Google Scholar 

  17. M. R. Fenske, Fractionation of Straight-Run Pennsylvania Gasoline, Ind. Eng. Chem., 24, 5, pp. 482–485 (1932).

    Article  Google Scholar 

  18. A. J. V. Underwood, Fractional Distillation of Multicomponent Mixtures, Chem. Eng. Prog., 44, 8, pp. 603–614 (1948).

    Google Scholar 

  19. E. R. Gilliland, Multi-component Rectification, Estimation of the Number of Theoretical Plates as a Function of the Reflux Ratio, Ind. Eng. Chem., 32, 9, pp. 1220–1223 (1940).

    Article  Google Scholar 

  20. R. N. S. Rathore, K. A. van Wormer, and G. J. Powers, Synthesis Strategies for Multicomponent Separation Systems with Energy Integration, AIChE J, 20, 3, pp. 491–502 (1974).

    Article  Google Scholar 

  21. National Engineering Laboratory, PPDS. Physical Properties Data Service, The Institution of Chemical Engineers, Rugby, England (1981).

    Google Scholar 

  22. J. M. Douglas, Conceptual Design of Chemical Processes, McGraw Hill (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Fraga, E.S. (1996). Discrete Optimization using String Encodings for the Synthesis of Complete Chemical Processes. In: Floudas, C.A., Pardalos, P.M. (eds) State of the Art in Global Optimization. Nonconvex Optimization and Its Applications, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3437-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3437-8_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3439-2

  • Online ISBN: 978-1-4613-3437-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics