A General D.C. Approach to Location Problems

  • Hoang Tuy
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 7)


We show that many important location problems (Weber’s problem with attraction and repulsion, constrained multisource and multifacility problems,…) can be formulated as d.c. optimization problems in low-dimensional spaces and thereby can be solved practically by recently developed d.c. optimization techniques. Two typical algorithms are described in detail.


Single facility multisource multifacility location attraction and repulsion unconstrained and constrained location d.c. approach low rank nonconvex optimization problems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y.P. Aneja and M. Parlar: 1994,’Algorithms for Weber facility location in the presence of forbidden regions and/or barriers to travel’, Transportation Science, 28, 70–216.zbMATHCrossRefGoogle Scholar
  2. 2.
    R. Chen : 1983,’Solution of minisum and minimax location-allocation problems with euclidean distances’, Naval Research Logistics Quaterly, 30, 449–459.CrossRefGoogle Scholar
  3. 3.
    R. Chen : 1988,’Conditional minisum and minimax location- allocation problems in Euclidean space’, Transportation Science, 22, 157–160.MathSciNetCrossRefGoogle Scholar
  4. 4.
    P. Chen, P. Hansen, B. Jaumard and H. Tuy: 1992,’Weber’s problem with attraction and repulsion’, Journal of Regional Science, 32, 467–409.CrossRefGoogle Scholar
  5. 5.
    P. Chen, P. Hansen, B. Jaumard and H. Tuy: 1994, ’Solution of the multisource Weber and conditional Weber problems by D.C. Programming’, Cahier du GERAD, G-92–35, Ecole Poly technique, Montreal.Google Scholar
  6. 6.
    Z. Drezner and G. Wesolowsky: 1990,’The Weber problem on the plane with some negative weights’, INFOR, 29, 87–99.Google Scholar
  7. 7.
    P. Hansen, D. Peeters and J.F. Thisse: 1982,’An algorithm for a constrained Weber problem’, Management Science, 28, 1285–1295.zbMATHCrossRefGoogle Scholar
  8. 8.
    P. Hansen, D. Peeters, D. Richard and J.F. Thisse: 1985,’The minisum and minimax location problems revisited’, Operations Research, 33, 1251–1265.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    R. Horst and H. Tuy: 1993, Global Optimization, Kluwer Academic Press, second edition.Google Scholar
  10. 10.
    H. Idrissi, P. Loridan and C. Michelot: 1988,’Approximation of Solutions for Location Problems’, Journal on Optimization Theory and Applications, 56, 127–143.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    R.T. Rockafellar : 1970, Convex analysis, Princeton University Press.zbMATHGoogle Scholar
  12. 12.
    C.D. Maranas and C.A. Floudas:1993,’A global Optimization method for Weber’s problem with attraction and repulsion’, in Large Scale Optimization: State of the Art, eds. W.W. Hager, D.W. Heran and P.M. Pardalos, Kluwer Academic Publishers, 1–12.Google Scholar
  13. 13.
    C.D. Maranas and C.A. Floudas:1994,’Global minimum potential energy conformations of small molecules’, Journal of Global Optimization, 4, 135–171.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    N. Meggido and K.J. Supowit:1984,’On the complexity of some common geometric location problems’, SIAM Journal on Computing 13, 182–196.MathSciNetCrossRefGoogle Scholar
  15. 15.
    V.H. Nguyen and J.J. Strodiot: 1992,’Computing a global optimal solution to a design centering problem’, Mathematical Programming, 53, 111–123.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    F. Plastria : 1992,’The generalized big square small method for planar single facility location’ European Journal of Operations Research 62, 163–174.zbMATHCrossRefGoogle Scholar
  17. 17.
    F. Plastria : 1993,’Continuous location anno 1992, A progress report’, Studies in Location Analysis, 5, 85–127.Google Scholar
  18. 18.
    K.E. Rosing : 1992,’An optimal method for solving the generalized multi-Weber problem’, European Journal of Operations Research, 58, 414–426.zbMATHCrossRefGoogle Scholar
  19. 19.
    P.T. Thach : 1988,’The design centering problem as a d.c. programming problem’, Mathematical Programming, 41, 229–248.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    P.T. Thach : 1993,’D.C. sets, D.C. functions and nonlinear equations’, Mathematical Programming 58, 415–428.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    P.T. Thach and H. Konno: 1994,’On the degree and separability of nonconvexity and applications to optimization problems’, Preprint IHSS, Tokyo Institute of Technology. To appear in Mathematical Programming.Google Scholar
  22. 22.
    H. Tuy : 1986, ’A general deterministic approach to global optimization via d.c. programming’, in J.-B. Hiriart-Urruty ed., Fermat Days 1985: Mathematics for Optimization, North- Holland, Amsterdam, 137–162.Google Scholar
  23. 23.
    H. Tuy : 1987,’Global minimization of a difference of convex functions’, Mathematical Programming Study, 30, 150–182.zbMATHGoogle Scholar
  24. 24.
    H. Tuy : 1990, ’On a polyhedral annexation method for concave minimization’, in Functional Analysis, Optimization and Mathematical Economics, eds. L.J. Leifman and J.B. Rosen, Oxford University Press, 248–260.Google Scholar
  25. 25.
    H. Tuy : 1991,’Polyhedral annexation, dualization and dimension reduction technique in global optimization’, Journal of Global Optimization, 1, 229–244.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    H. Tuy : 1992,’The complementary convex structure in global optimization’, Journal of Global Optimization, 2, 21–40.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    H. Tuy : 1992,’On nonconvex optimization problems with separated nonconvex variables’, 2, 133–144.Google Scholar
  28. 28.
    H. Tuy : 1995, ’D.C. Optimization: Theory, Methods and Algorithms’, in Handbook on Global Optimization, eds. R. Horst and P. Pardalos, Kluwer Academic Publishers, 149–216.Google Scholar
  29. 29.
    H. Tuy : 1993,’Introduction to Global Optimization’, a Ph.D. course, Cahiers du GERAD G-94-04.Google Scholar
  30. 30.
    H. Tuy and Faiz A. Alkhayyal: 1992,’Global Optimization of a Nonconvex Single Facility Problem by Sequential Unconstrained Convex Minimization’, Journal of Global Optimization, 2, 61–71.MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    H. Tuy, Faiz A. Alkhayyal and Fangjun Zhou: 1994, ’D.C. optimization method for single facility location problem’, preprint, Institute of Mathematics, Hanoi.Google Scholar
  32. 32.
    H. Tuy and N.V. Thuong: 1988,’On the global minimization of a convex function under general nonconvex constraints’, Applied Mathematics and Optimization, 18, 119–142.MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    L. Vidigal and S. Director: 1982,’A design centering problem algorithmfor nonconvex regions of acceptability’, IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, 14, 13–24.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Hoang Tuy
    • 1
  1. 1.Institute of MathematicsBo Ho, HanoiVietnam

Personalised recommendations