Global Optimization Using Hyperbolic Cross Points

  • Erich Novak
  • Klaus Ritter
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 7)


We propose a new numerical method for finding the global minimum of a real-valued function defined on a d-dimensional box. Our method is based only on function values at the hyperbolic cross points and uses an adaptive order of these points. We motivate our method by complexity results and also give numerical examples.


Global optimization complexity hyperbolic cross points 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boender, C. G. E., and Romeijn, H. E., “Stochastic methods,” In: Handbook of Global Optimization, R. Horst, P. M. Pardalos, eds., Kluwer, Dordrecht, 1995, pp. 829–869.Google Scholar
  2. 2.
    L. Breiman, L., and A. Cutler, A., “A deterministic algorithm for global optimization,” Math. Programming 58 (1993), pp. 179–199.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Byrd, R. H., Dert, C. L., Rinnoy Kein, A. H. G., and Schnabel, R. B., “Concurrent stochastic methods for global optimization,” Math. Programming 46 (1990), pp. 1–29.Google Scholar
  4. 4.
    Calvin, J. M., Average performance of a class of adaptive algorithms for globed optimization, Preprint, Georgia Institute of Technology, Atlanta, 1995.Google Scholar
  5. 5.
    Dixon, L. C. W., and Szegö, G. P., “The global optimisation problem: an introduction,” In: Towards Global Optimisation, Vol. 2, L. C. W. Dixon, G. P. Szegö, eds., North-Holland, Amsterdam, 1978, pp. 1–15.Google Scholar
  6. 6.
    Griewank, A. O., “Generalized descent for global optimization,” J.O. timization Th. Appl. 34 (1981), pp. 11–39.Google Scholar
  7. 7.
    Hansen, E ., “Globed Optimization Using Interval Analysis,” Dekker, New York, 1992.Google Scholar
  8. 8.
    Hansen, P., and Jaumard, B., “Lipschitz optimization,” In: Handbook of Globed Optimization, R. Horst, P. M. Pardalos, eds., Kluwer, Dordrecht, 1995, pp. 407–493.Google Scholar
  9. 9.
    Mladineo, R. H., “Stochastic minimization of Lipschitz functions,” In: Recent Advances in Global Optimization, C. A. Floudas, P. M. Pardalos, eds., Princeton University Press, Princeton, 1992, pp. 369–383.Google Scholar
  10. 10.
    Mockus, J ., “Bayesian Approach to Global Optimization,” Kluwer, Dordrecht, 1989.zbMATHCrossRefGoogle Scholar
  11. 11.
    Nemirovsky, A. S., and Yudin, D. B., “Problem Complexity and Method Efficiency on Optimization,” Wiley, Chicester, 1983.Google Scholar
  12. 12.
    Novak, E., “Deterministic and Stochastic Error Bounds in Numerical Analysis,” Lecture Notes in Mathematics 1349, Springer, Berlin, 1988.Google Scholar
  13. 13.
    Novak, E., Ritter, K., and Wozniakowski, H., “Average case optimality of a hybrid secant bisection method,” Math. Comp., to appear in 1995.Google Scholar
  14. 14.
    Ratschek, H., and Rokne, J., “Interval methods,” In: Handbook of Global Optimization, R. Horst, P. M. Pardalos, eds., Kluwer, Dordrecht, 1995, pp. 751 - 828.Google Scholar
  15. 15.
    Rinnooy Kan, A. H. G., and Timmer, G. T., “A Stochastic Approach to Global Optimization,” In: Numerical Optimization 1984, P. T. Boggs, R. H. Byrd, eds., SIAM, Philadelphia, 1985, pp. 245–262.Google Scholar
  16. 16.
    Ritter, K ., “Approximation and optimization on the Wiener space,” J. Complexity 6 (1990), pp. 337–364.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Schäffler, S ., “Unconstrained global optimization using stochastic integral equations,” Tech-nical Report. Technische Universität München, Institut für Angewandte Mathematik und Statistik, 1994.Google Scholar
  18. 18.
    Smolyak, S.A ., “Quadrature and interpolation formulas for tensor products of certain classes of functions,” Soviet Math. Dokl. 4 (1963), pp. 240–243.Google Scholar
  19. 19.
    Temlyakov, V. N., “Approximate recovery of periodic functions of several variables,” Math. USSR Sbornik 56 (1987), pp. 249–261.CrossRefGoogle Scholar
  20. 20.
    Torn, A., and Zilinskas, A., “Global Optimization,” Lecture Notes in Computer Science 350, Springer, Berlin, 1989.Google Scholar
  21. 21.
    Traub, J. F., Wasilkowski, G. W., and Wozniakowski, H., “Information-Based Complexity,” Academic Press, New York, 1988.zbMATHGoogle Scholar
  22. 22.
    Vavasis, S. A ., “Nonlinear Optimization, Complexity Issues,” Oxford University Press, New York, 1991.zbMATHGoogle Scholar
  23. 23.
    Wasilkowski, G. W., “Some nonlinear problems are as easy as the approximation problem,” Comput. Math. Appl. 10 (1984), pp. 351–363.MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Wasilkowski, G. W., “Randomization for continuous problems,” J. Complexity 5 (1989), pp. 195–218.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Wasilkowski, G. W., “On average complexity of global optimization problems,” Math. Programming 57 (1992), pp. 313–324.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Wasilkowski, G. W., and Wozniakowski, H., “Explicit cost bounds of algorithms for multi-variate tensor product problems,” J. Complexity 11 (1995), pp. 1–56.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Wozniakowski, H ., “Average case complexity of linear multivariate problems,” Part 1 and 2. J. Complexity 8 (1992), 337–392.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Erich Novak
    • 1
  • Klaus Ritter
    • 1
  1. 1.Mathematisches InstitutUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations