Advertisement

A C++ Class Library for Interval Arithmetic in Global Optimization

  • Kristina Holmqvist
  • Athanasios Migdalas
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 7)

Abstract

Global optimization methods based on interval arithmetic have potential to efficiently solve problems that standard nonlinear programming techniques cannot handle well. In interval arithmetic the machine arithmetic is performed by approximating a real number with an enclosing interval, rather than with a single floating point number. Hence, an automatic control over rounding errors is provided. To use interval arithmetic in practice either a language with built-in interval arithmetic or a suitable subroutine library is needed. Such a library can with advantage be implemented in C++, realizing intervals as objects with well defined interfaces. In this paper we report experience from implementing and using a C++ class library for global optimization using interval arithmetic. Measurements show that the use of object oriented programming and operator overloading does not affect performance negatively. In fact, our C++ implementation of interval arithmetic is actually faster than a comparable Fortran implementation.

Keywords

Interval Arithmetic Global Optimization Object-oriented 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Alefeld and J. Herzberger.Introduction to Interval Computations. Academic Press, New York, 1983.zbMATHGoogle Scholar
  2. 2.
    N. Apostolatos, U. Kulisch, R. Krawczyk, B. Lortz, K. L. Nickel, and H.-W. Wippermann. The algorithmic language Triplex-ALGOL 60.Numerische Mathematik, 11: 175–180, 1968.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    R. Baker Kearfott. An interval branch and bound algorithm for bound constrained optimization problems.Journal of Global Optimization, 2 (3): 259–280, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    G. Bohlender, E. Kaucher, R. Klatte, U. Kulisch, W. L. Miranker, C. Ullrich, and J. Wolff von Gudenberg. FORTRAN for contemporary numerical computation.Computing, 26: 277–314, 1981.Google Scholar
  5. 5.
    K. Du and R. Baker Kearfott. The cluster problem in multivariate global optimization.Journal of Global Optimization, 5 (3): 253–265, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    M. A. Ellis and B. Stroustrup.The Annotated C++ Reference Manual. Addison-Wesley Publishing Company, 1990.Google Scholar
  7. 7.
    Y. Fujii, K. Ichida, and M. Ozasa. Maximization of multivariable functions using interval analysis. In K. L. Nickel, editor,Interval Mathematics 1985, volume 212 of Lecture Notes in Computer Science, pages 17–26, Berlin, 1985. Springer-Verlag.Google Scholar
  8. 8.
    E. Gardenes, A. Trepat, and J. M. Janer. SIGLA-PL/l development and applications. In K. L. Nickel, editor,Interval Mathematics 1980, pages 301–315. Academic Press, 1980.Google Scholar
  9. 9.
    A. Gibb. Algorithm 61: Procedures for range arithmetic.Communications of the ACM, 4: 319–320, 1961.CrossRefGoogle Scholar
  10. 10.
    G. Guenther and G. Marquardt. A programming system for interval arithmetic in ALGOL 68. In K. L. Nickel, editor,Interval Mathematics 1980, pages 355–366. Academic Press, 1980.Google Scholar
  11. 11.
    E. R. Hansen. Global optimization using interval analysis: The one-dimensional case.Journal of Optimization Theory and Applications, 29 (3): 331–344, 1979.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    E. R. Hansen. Global optimization using interval analysis: The multidimensional case.Numerische Mathematik, 34 (3): 247–270, 1980.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    E. Ft. Hansen . An overview of global optimization using interval analysis. In R. E. Moore, editor,Reliability in Computing: The role of Interval Methods in Scientific Computing, pages 289–307. Academic Press, 1988.Google Scholar
  14. 14.
    E. R. Hansen .Global Optimization Using Interval Analysis. Marcel Dekker, Inc., New York, 1992.zbMATHGoogle Scholar
  15. 15.
    K. Holmqvist . A C++ class library for global optimization using interval arithmetic. Master’s Thesis, Linköping University, 1994. LIU-MAT-C—94/18—SE.Google Scholar
  16. 16.
    IBM Deutschland GmbH. High-Accuracy Arithmetic Subroutine Library (ACRITH), 1986.Google Scholar
  17. 17.
    IBM Deutschland GmbH.ACRITH-XSC: IBM High Accuracy Arithmetic — Extended Scientific Computation, 1990.Google Scholar
  18. 18.
    Institute of Electrical and Electronic Engineers, Inc., New York.Binary Floating Point Arithmetic, Std 754–1985, 1985.Google Scholar
  19. 19.
    R. Klatte, U. Kulisch, A. Wiethoff, C. Lawo, and M. Rauch. C-XSC: A C++ Class Library for Extended Scientific Computing. Springer-Verlag, Berlin, 1991.Google Scholar
  20. 20.
    U. W. Kulisch .PASCAL-SC: A PASCAL extension for Scientific Computation, 1987.Google Scholar
  21. 21.
    U. W. Kulisch and W. L. Miranker.Computer Arithmetic in Theory and Practice. Academic Press, New York, 1981.zbMATHGoogle Scholar
  22. 22.
    R. E. Moore.Interval Analysis. Prentice Hall, Englewood Cliffs, 1966.zbMATHGoogle Scholar
  23. 23.
    K. L. Nickel . Triplex-Algol and its applications. In E. R. Hansen, editor,Topics in Interval Analysis, pages 10–24. Oxford University Press, 1969.Google Scholar
  24. 24.
    P. M. Pardalos, A. T. Phillips, and J. B. Rosen.Topics In Parallel Computing In Mathematical Programming. Science Press, New York, 1992.zbMATHGoogle Scholar
  25. 25.
    H. Ratschek . Some rescent aspects of interval algorithms for global optimization. In R. E. Moore, editor,Reliability in Computing: The role of Interval Methods in Scientific Computing, pages 325–339. Academic Press, 1988.Google Scholar
  26. 26.
    H. Ratschek and J. Rokne.New Computer Methods for Global Optimization. Ellis Horwood Limited, Chichester, 1988.zbMATHGoogle Scholar
  27. 27.
    H. Ratschek and J. Rokne. Experiments using interval analysis for solving a circuit problem.Journal of Global Optimization, 3 (4): 501–518, 1993.MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    H. Ratschek and R. L. Voller. What can interval analysis do for global optimization?Journal of Global Optimization, l(2):111–130, 1991.MathSciNetCrossRefGoogle Scholar
  29. 29.
    H. S. Ryoo and N. V. Sahinidis. A branch-and-reduce approach to global optimization.Journal of Global Optimization, 1994.Google Scholar
  30. 30.
    S. Skelboe. Computation of rational interval functions.BIT, 14: 87–95, 1974.Google Scholar
  31. 31.
    SunSoft, 2550 Garcia Avenue, Mountain View, CA 94043, USA.C++ 4.0 User’s Guide, 1994.Google Scholar
  32. 32.
    SunSoft, 2550 Garcia Avenue, Mountain View, CA 94043, USA.Fortran 3.0 User’s Guide, 1994.Google Scholar
  33. 33.
    P. Thieler . Technical calculations by means of interval mathematics. In K. L. Nickel, editor,Interval Mathematics 1985, volume 212 ofLecture Notes in Computer Science, pages 197–208, Berlin, 1985. Springer-Verlag.Google Scholar
  34. 34.
    H.-W. von Wippermann. Realiserung einer intervall-arithmetik in einem ALGOL 60-system.Elektronische Rechenanlagen, 9 (5): 224–233, 1967.zbMATHGoogle Scholar
  35. 35.
    W. T. Wyatt, Jr., D.W. Lozier, and D. J. Orser. A portable extended precision arithmetic package and library with Fortran precompiler.ACM Transactions on Mathematical Software, 2 (3): 209–231, 1976.zbMATHCrossRefGoogle Scholar
  36. 36.
    J. M. Yohe. Implementing nonstandard arithmetics.SIAM Review, 21 (l): 34–63, 1979.zbMATHCrossRefGoogle Scholar
  37. 37.
    J. M. Yohe. Software for interval arithmetic: A reasonably portable package.ACM Transactions on Mathematical Software, 5 (l): 50–63, 1979.CrossRefGoogle Scholar
  38. 38.
    J. M. Yohe. Portable software for interval arithmetic.Computing Supplementum, 2: 211–229, 1980.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Kristina Holmqvist
    • 1
  • Athanasios Migdalas
    • 1
  1. 1.Division of Optimization, Department of MathematicsLinköping UniversityLinköpingSweden

Personalised recommendations