Thermodynamic Anomalies near the Liquid-Vapor Critical Point: A Review of Experiments

  • Michael R. Moldover


From the point of view of testing theoretical developments, liquid-vapor systems are representative of 3-dimensional systems with short-ranged forces and scalar order parameters. Liquid-vapor systems are attractive experimental systems because they can be studied in thermodynamic equilibrium (unlike liquid-liquid systems near consolute points). Liquid-vapor systems are free from frozen-in impurities and long-ranged strain fields that occur in crystals. A field conjugate to the order parameter is accessible in liquid-vapor systems, thus the scaling function for the free energy can be measured. These systems lack the symmetry of certain magnets and Ising models. This presents problems for simple-minded analyses of data. Nature does not tell us in advance which variables to use; however, this problem and its associated asymmetries are of interest in their own right. The primary macroscopic inhomogeneity in liquid-vapor systems is a density gradient over the height of a sample because of the earth’s gravitational field. This phenomenon is fully understood and has been exploited for the most delicate measurements of the equation of state.


Renormalization Group2 Ising Model Critical Exponent Amplitude Ratio Scaling Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Domb, in Phase Transitions and Critical Phenomena. Vol. 3, C. Domb and M. S. Green, eds. (Academic Press, New York, 1974), Ch. 6; See also B. G. Nickel, this volume.Google Scholar
  2. 2.
    G. A. Baker, B. G. Nickel, and D. I. Meiron, Phys. Rev. B17, 1365 (1978); J. C. LeGuillou and J. Zinn-Justin, Phys. Rev. B21, 3976 (1980).ADSGoogle Scholar
  3. 3.
    J. J. Rehr and N. D. Mermin, Phys. Rev. A8, 472 (1973).ADSGoogle Scholar
  4. 4.
    F. J. Wegner, Phys. Rev. B5, 4529 (1972); F. J. Wegner, Phys. Rev. B6, 1891 (1972).ADSGoogle Scholar
  5. 5.
    M. Ley-Koo and M. S. Green, Phys. Rev. A16, 2483 (1977).ADSGoogle Scholar
  6. 6.
    C. N. Yang and C. P. Yang, Phys. Rev. Lett. 13, 303 (1964).ADSCrossRefGoogle Scholar
  7. 7.
    G. R. Brown and H. Meyer, Phys. Rev. A6, 364 (1972).ADSGoogle Scholar
  8. 8.
    M. R. Moldover, Phys. Rev. 182, 342 (1969).ADSCrossRefGoogle Scholar
  9. 9.
    A. V. Voronel, V. G. Gorbunova, V. A. Smirnov, N. G. Shmakov, and V. V. Shchekochikhina, Zh. Eksp. Teor. Fiz. 63, 964 (1972) [Eng. Transi. Sov. Phys. JETP 36, 505 (1973)]; M. A. Anisimov, A. T. Berestov, L. S. Veksler, B. A. Kovalchuk, and V. A. Smirnov, Zh. Eksp. Teor. Fiz. 66, 742 (1974) [Eng. Transl. Sov. Phys. JETP 39, 359 (1974)].Google Scholar
  10. 10.
    B. Widom, J. Chem. Phys. 43, 3898 (1965).ADSCrossRefGoogle Scholar
  11. 11.
    J. F. Nicoll, T. S. Chang, A. Hankey, and H. E. Stanley, Phys. Rev. B11, 1176 (1975).ADSGoogle Scholar
  12. 12.
    R. B. Griffiths and J. C. Wheeler, Phys. Rev. A2, 1047 (1970).ADSGoogle Scholar
  13. 13.
    R. B. Griffiths, J. Chem. Phys. 43, 1958 (1965).ADSCrossRefGoogle Scholar
  14. 14.
    H. A. Kierstead, Phys. Rev. A3, 329 (1971).ADSGoogle Scholar
  15. 15.
    R. P. Behringer, T. Doiron, H. Meyer, J. Low Temp. Phys. 24, 315 (1976).ADSCrossRefGoogle Scholar
  16. 16.
    J. A. Lipa, C. Edwards, and M. J. Buckingham, Phys. Rev. A15, 778 (1977).ADSGoogle Scholar
  17. 17.
    J. M. H. Levelt Sengers and W. T. Chen, J. Chem. Phys. 56, 595 (1972).ADSCrossRefGoogle Scholar
  18. 18.
    J. M. H. Levelt Sengers, Physica 73, 73 (1974).ADSCrossRefGoogle Scholar
  19. 19.
    L. Haar, J. Gallagher, and G. S. Kell in Water and Steam: Proc. 9th Intl. Conf. on Properties of Steam, J. Straub and. Scheffler, eds. (Pergamon Press, New York, 1980) p. 69.Google Scholar
  20. 20.
    A. Aharony and P. C. Hohenberg, Phys. Rev. B13, 3081 (1976).ADSGoogle Scholar
  21. 21.
    M. C. Chang and A. Houghton, Phys. Rev. B21, 1881 (1980).MathSciNetADSGoogle Scholar
  22. 22.
    A. V. Voronel in Phase Transitions and Critical Phenomena, Vol. 5B, C. Domb and M. S. Green, eds. (Academic Press, New York, 1976) p. 343–94.Google Scholar
  23. 23.
    M. R. Moldover, J. V. Sengers, R. W. Gammon, and R. J. Hocken, Rev. Mod. Physics 51, 79 (1979).ADSCrossRefGoogle Scholar
  24. 24.
    L. M. Artyukhovskaya, E. T. Shimanskaya, and Yu I. Shimanskii, Zh. Eksp. Teor. Fiz. 63 2159 (1972) [Eng. Transi: Sov. Physics JETP 36, 1140 (1973).Google Scholar
  25. 25.
    E. H. W. Schmidt in Critical Phenomena, M. S. Green and J. V. Sengers, eds. National Bureau of Standards Miscellaneous Publication 273 (U.S. Govt. Printing Office, Washington, D.C., 1966) p. 13.Google Scholar
  26. 26.
    D. A. Balzarini, Canadian J. Phys. ,50, 2194 (1972).ADSCrossRefGoogle Scholar
  27. 27.
    C. Pittman, T. Doiron, H. Meyer, Phys. Rev. B20, 3678 (1979).ADSGoogle Scholar
  28. 28.
    L. A. Weber, Phys. Rev. A2, 2379 (1970).ADSGoogle Scholar
  29. 29.
    J. Weiner, K. H. Langley, N. C. Ford, Phys. Rev. Lett. 32, 879 (1974); J. Weiner, Ph.D. Thesis, Univ. of Massachusetts, 1974.ADSCrossRefGoogle Scholar
  30. 30.
    J. V. Sengers, D. Bedeaux, P. Mazur, and S. C. Greer, Physica, 104A, 573 (1980).ADSGoogle Scholar
  31. 31.
    L. R. Wilcox and D. Balzarini, J. Chem. Phys. 48, 753 (1968); W. T. Estler, R. Hocken, T. Charlton, and L. R. Wilcox, Phys. Rev. A12, 2118 (1975).ADSCrossRefGoogle Scholar
  32. 32.
    R. Hocken and M. R. Moldover, Phys. Rev. Lett. 37, 29 (1976).ADSCrossRefGoogle Scholar
  33. 33.
    L. R. Wilcox and W. T. Estler, J. Phys. (Paris), Colloq. 32 C5A-175 (1971).CrossRefGoogle Scholar
  34. 34.
    P. Schofield, Phys. Rev. Lett. 22, 606 (1969).ADSCrossRefGoogle Scholar
  35. 35.
    J. V. Sengers and M. R. Moldover, Phys. Lett. 66A, 44 (1978); see also J. V. Sengers in this volume.ADSGoogle Scholar
  36. 36.
    D. Balzarini and K. Ohrn, Phys. Rev. Lett. 29, 840 (1972).ADSCrossRefGoogle Scholar
  37. 37.
    D. Balzarini and M. Burton, Canadian J. Phys. 57, 1516 (1979).ADSCrossRefGoogle Scholar
  38. 38.
    F. W. Balfour, J. V. Sengers, M. R. Moldover, and J. M. H. Levelt Sengers in Proc. 7th Symposium on Thermophysical Properties, A. Cezairliyan, ed. (American Society of Mechanical Engineers, New York, 1977) p. 786.Google Scholar
  39. 39.
    D. J. Wallace in Phase Transitions and Critical Phenomena, Vol. 6, C. Domb and M. S. Green, eds., (Academic Press, New York, 1976)Google Scholar
  40. 40.
    A. V. Voronel, V. G. Gorbunova, and N. G. Shmakov, Zh. Eksp. Teor. Fiz. Pis’ma Red. 9, 333 (1969) [Eng. Transl. Sov. Phys. JETP Lett. 9, 195 (1969)].ADSGoogle Scholar
  41. 42.
    T. Doiron, R. P. Behringer, and H. Meyer, J. Low Temp. Phys. 24 345 (1976); G. R. Brown and H. Meyer, Phys. Rev. A6, 1578 (1972).ADSCrossRefGoogle Scholar
  42. 43.
    S. S. Leung and R. B. Griffiths, Phys. Rev. A8, 2670 (1973); see also ref. 42.ADSGoogle Scholar
  43. 44.
    K. E. Bett, J. S. Rowlinson, and G. Saville, Thermodynamics for Chemical Engineers (MIT Press, Cambridge, Mass., USA, 1975) p. 371.Google Scholar
  44. 45.
    M. R. Moldover and J. S. Gallagher, AIChE Journal 24, 267 (1978).CrossRefGoogle Scholar
  45. 46.
    W. B. Kay, J. Genco, and D. A. Fichtner, J. Chem. Eng. Data 19, 275 (1974).CrossRefGoogle Scholar
  46. 47.
    J. M. H. Levelt Sengers, W. L. Greer, and J. V. Sengers, J. Phys. Chem. Ref. Data, 5, 1 (1976).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Michael R. Moldover
    • 1
  1. 1.Thermophysics DivisionNational Bureau of StandardsUSA

Personalised recommendations