Series Expansions for the Classical Vector Model

  • Sati McKenzie


In the. last lecture, we dealt with the ${\rm spin}-{1\over2}$ Ising model, with the Hamiltonian, ${\rm {\cal H}_I = -J \sum\limits_{<ij>}\sigma_i \sigma_j - mH\sum\sigma_i},$ where the coupling between the spins is confined to the z-components, with σ1 = ± 1. We shall now consider a more general Hamiltonian of the form, ${\rm {\cal H}=-{1\over {S^2}} \sum\limits_{<ij>} J_{ij} {\underline S}_i\cdot {\underline S}_j -{m\over S}\sum\limits_{i=1}^N {\underline S}_i\cdot{\underline H}_i}.$ The spins ${\rm {\underline S}_i}$ are now D-dimensional vectors given by, ${\rm {\underline S}_i= \{S_i^1\ S_i^2\ \cdot\cdot\cdot\ S_i^D\}}$ The interaction between the spins takes the form of a scalar product ${\rm {\underline S}_i\cdot}{\rm {\underline S}_j}$ and (2) defines the D-vector model.


Partition Function Ising Model Star Graph Articulation Point Cycle Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.S. Rushbrooke, G.A. Baker Jr. and P.J. Wood in “Phase Transitions and Critical Phenomena”, Vol.3, Eds. C. Domb and M.S. Green (London: Academic Press) Ch.5 (1974).Google Scholar
  2. 2.
    D.D. Betts, in “Phase Transitions and Critical Phenomena”, Vol.3, Eds. C. Domb and M.S. Green (London: Academic) Ch.8 (1974).Google Scholar
  3. 3.
    H.E. Stanley, in “Phase Transitions and Critical Phenomena” Vol.3, Eds. C. Domb and M.S. Green (London: Academic) Ch.7 (1974)Google Scholar
  4. 4.
    G.S. Rushbrooke and P.J. Wood, Mol.Phys. 1, 257 (1958).ADSCrossRefGoogle Scholar
  5. 5.
    R.L. Stephenson and P.J. Wood, Phys.Rev. 173, 475 (1968).ADSCrossRefGoogle Scholar
  6. 6.
    H.E. Stanley, Phys.Rev. 158, 537, 546 (1967).ADSCrossRefGoogle Scholar
  7. 7.
    G.S. Joyce and R.G. Bowers, Proc.Phys.Soc. (London) 88, 1053 (1966).ADSCrossRefGoogle Scholar
  8. 8.
    M. Ferer, M.A. Moore and M. Wortis, Phys.Rev.B 4, 3954 (1971).ADSCrossRefGoogle Scholar
  9. 9.
    C. Domb, J.Phys.C 5, 1417 (1972).ADSCrossRefGoogle Scholar
  10. 10.
    C. Domb, J.Phys.A 9, 983 (1976).ADSCrossRefGoogle Scholar
  11. 11.
    P.S. English, D.L. Hunter and C. Domb, J.Phys.A 12, 2111 (1979).ADSCrossRefGoogle Scholar
  12. 12.
    G.S. Joyce, Phys.Rev. 155, 478 (1967).ADSCrossRefGoogle Scholar
  13. 13.
    C. Domb, J.Phys.A 7, L45 (1974).ADSCrossRefGoogle Scholar
  14. 14.
    D.C. Rapaport, J.Phys.A 7, 1918 (1974).ADSCrossRefGoogle Scholar
  15. 15.
    H.E. Stanley, Phys.Rev. 179, 570 (1969).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Sati McKenzie
    • 1
  1. 1.Department of PhysicsKing’s CollegeLondonUK

Personalised recommendations