Skip to main content

Static and Dynamic Critical Phenomena near the Superfluid Transition in 4He

  • Chapter
Phase Transitions Cargèse 1980

Abstract

It is widely appreciated that the superfluid transition in liquid 4He is an exceptionally suitable system for detailed experimental investigations of continuous phase transitions. Its merits and limitations have been discussed in detail elsewhere, 1,2 and the experimental results on the static properties have been reviewed in detail.2 In the present lectures, I would like to provide a summary of some recent developments in our understanding of the static properties and then discuss the behavior of the singularities of transport properties. Before proceeding to this, however, it is useful to review recent more general developments not limited to the superfluid transition which pertain to the nature of confluent singularities. These singularities have a strong bearing on the interpretation of experimental results near phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Ahlers, Rev. Mod. Phys. 52:482 (1980).

    Article  ADS  Google Scholar 

  2. G. Ahlers, in “Quantum Liquids,” J. Ruvalds and T. Regge, eds., North-Holland, Amsterdam (1978) p. 1.

    Google Scholar 

  3. M.Wortis, unpublished (1970); D. M. Saul, M. Wortis and D. Jasnow, Phys. Rev. B11:2571 (1975); W. J. Camp and J. P. Van Dyke, Phys. Rev. B11:2579 (1975); W. J. Camp, D. M. Saul, J. P. Van Dyke, and M. Wortis, Phys. Rev. B14:3990 (1976); W. J. Camp and J. P. Van Dyke, J. Phys.A9:721 (1976); M. Ferer,Phys. Rev. B16:419 (1977).

    Google Scholar 

  4. D. S. Greywall and G. Ahlers, Phys. Rev. Lett. 28:1251 (1972); Phys. Rev. A7: 2145 (1973).

    Article  ADS  Google Scholar 

  5. D. Balzarini and K. Ohrn, Phys. Rev. Lett. 29:840 (1972).

    Article  ADS  Google Scholar 

  6. F. J. Wegner, Phys. Rev. B5:4529 (1972); B6:1891 (1972).

    ADS  Google Scholar 

  7. E. Brézin, J. C. LeGuillou, and J. Zinn-Justin, Phys. Rev. D8: 2418 (1973); A. D. Bruce and A. Aharony, Phys. Rev. B10:2078 (1974; E. Brézin, Phys. Rev. B8:5330 (1973); J. Swift and M. K. Grover, Phys. Rev. A9:2579 (1974; G. R. Golner and E. K. Riedel, Phys. Lett. 58A:11 (1976); G. A. Baker, B. G. Nickel, M. S. Green and D. I. Meiron, Phys. Rev. Lett. 36:1351 (1976).

    ADS  Google Scholar 

  8. J. C. LeGuillou and J. Zinn-Justin, Phys. Rev. Lett. 39:95 (1977); Phys. Rev. B21:3976 (1980).

    Article  ADS  Google Scholar 

  9. D. Z. Albert, Rockefeller University Preprint No. DOE/EY/2232B-204, and to be published.

    Google Scholar 

  10. For a discussion of effective exponents, see also G. Ahlers, Lectures at the Banff Summer School on Phase Transitions, August, 1976, unpublished.

    Google Scholar 

  11. See, for instance, N. Menyuk, K. Dwight, and T. B. Reed, Phys. Rev. B3:1689 (1971).

    ADS  Google Scholar 

  12. M. C. Chang and A. Houghton, Phys. Rev. B21:1881 (1980); Phys. Rev. Lett. 44:785 (1980); Phys. Rev. B, in press.

    MathSciNet  ADS  Google Scholar 

  13. A. Aharony and G. Ahlers, Phys. Rev. Lett. 44:782 (1980).

    Article  ADS  Google Scholar 

  14. R. Hocken and M. R. Moldover, Phys. Rev. Lett. 37:29 (1976); and references therein.

    Article  ADS  Google Scholar 

  15. A. J. Guttman, J. Phys. A 8:1236, 1249 (1975); D. S. Gaunt and C. Domb, J. Phys. C 3:1442 (l970); C. Domb, in “Phase Transitions and Critical Phenomena,” C. Domb and M. S. Green, eds., Academic, New York (1974, Vol. 3, p. 357.

    Article  ADS  Google Scholar 

  16. K. H. Mueller, G. Ahlers, and F. Pobell, Phys. Rev. B 14:2096 (1976).

    Article  ADS  Google Scholar 

  17. G. Ahlers, Phys. Rev. A 8:530 (1973).

    Article  ADS  Google Scholar 

  18. R. A. Ferrell, N. Ményhard, H. Schmidt, F. Schwabl, and P. Szépfalusy, Phys. Rev. Lett. 18:891 (1967); Phys. Lett. 24A:493 (1967); Ann. Phys. (N.Y.) 47:565 (1968).

    Article  ADS  Google Scholar 

  19. B. I. Halperin and P. C. Hohenberg, Phys. Rev. Lett. 19:700 (1967); Phys. Rev. 177:952 (1969).

    ADS  Google Scholar 

  20. J. Kerrisk and W. E. Keller, Bull. Am. Phys. Soc. 12:550 (1967); Phys. Rev. 177:341 (1969).

    Google Scholar 

  21. G. Ahlers, in “Proceedings Eleventh International Conference on Low Temperature Physics,” J. F. Allen, D. M. Finlayson, and D. M. McCall, eds., University of St. Andrews Printing Department (1968), p. 203.

    Google Scholar 

  22. M. Archibald, J. M. Mochel, and L. Weaver, in: “Proceedings Eleventh International Conference on Low Temperature Physics,” J. F. Allen, D. M. Finlayson, and D. M. McCall, eds., University of St. Andrews Printing Department (1968), p. 211.

    Google Scholar 

  23. M. Archibald, J. M. Mochel, and L. Weaver, Phys. Rev. Lett. 21:1156 (1968).

    Article  ADS  Google Scholar 

  24. G. Ahlers, Phys. Rev. Lett. 21:1159 (1968).

    Article  ADS  Google Scholar 

  25. G. Ahlers, in: “Proceedings 12th International Conference On Low Temperature Physics,” E. Kanda, ed., Academic Press, Japan (1971), p.21.

    Google Scholar 

  26. G. Ahlers and R. P. Behringer, unpublished.

    Google Scholar 

  27. C. DeDominicis and L. Peliti, Phys. Rev. B 18:353 (1978).

    Article  ADS  Google Scholar 

  28. R. A. Ferrell and J. K. Bhattacharjee, Phys. Rev. Lett. 42:1638 (1979).

    Article  ADS  Google Scholar 

  29. V. Dohm and R. Folk, Z. Physik B 40:79 (1980); Phys. Rev. Lett. 46:349 (1981).

    Article  ADS  Google Scholar 

  30. G. Ahlers, P. C. Hohenberg, and A. Kornblit, Phys. Rev. Lett. 46:493 (1981); and to be published.

    Article  ADS  Google Scholar 

  31. P. C. Hohenberg, B. I. Halperin and D. R. Nelson, Phys. Rev. B 22:2373 (1980).

    Article  ADS  Google Scholar 

  32. B. I. Halperin, P. C. Hohenberg, and E. D. Siggia, Phys. Rev. B 13:1299 (1976). See also P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49:435 (1977).

    ADS  Google Scholar 

  33. R. A. Ferrell and J. K. Bhattacharjee, in “Proceedings International Conference on Dynamic Critical Phenomena,” C. P. Enz, ed., Springer, N.Y. (1979).

    Google Scholar 

  34. It should be mentioned that even the second-order terms of model F in their present form are only approximate and based upon model E.

    Google Scholar 

  35. W. B. Hanson and J. R. Pellam, Phys. Rev. 95:321 (1954).

    Article  ADS  Google Scholar 

  36. J. A. Tyson, Phys. Rev. Lett. 21:1235 (1968).

    Article  ADS  Google Scholar 

  37. T. J. Greytak, in: “Proceedings of the International Conference on Critical Dynamics,” C. P. Enz, ed., Springer, Berlin (1979).

    Google Scholar 

  38. W. F. Vinen and D. L. Hurd, Advances in Physics 27:533 (1978).

    Article  ADS  Google Scholar 

  39. E. D. Siggia, Phys. Rev. B 13:3218 (1976); P. C. Hohenberg, E. D. Siggia, and B. I. Halperin, Phys. Rev. B 14:2865 (1976).

    ADS  Google Scholar 

  40. V. Dohm and R. Folk, Z. Physik B 35:277 (1979).

    Article  ADS  Google Scholar 

  41. G. Ahlers, Phys. Rev. Lett. 43:1417 (1979).

    Article  ADS  Google Scholar 

  42. R. Williams, S. E. A. Beaver, J. C. Fraser, R. S. Kagiwada, and I. Rudnick, Phys. Lett. 29A:279 (1969); R. A. Sherlock and D. O. Edwards, Rev. Sci. Instrum. 41:1603 (1970).

    ADS  Google Scholar 

  43. J. Heiserman and I. Rudnick, J. Low Temp. Phys. 22:481 (1976); and references therin.

    Article  ADS  Google Scholar 

  44. Hanson and Pellam35 reported the second-sound attenuation α2 and the absolute temperature T. In order to convert α2 to D2, the second-sound velocity u2 is needed. The strong dependence upon Tλ − T of u2 introduces a considerable uncertainty into D2, associated with the uncertainty in the temperature scale of the early work.35 For the calculation of D2 from α2 we assumed that temperatures were reported on the 1948 scale of temperatures.

    Google Scholar 

  45. V. Dohm and R. Folk, to be published.

    Google Scholar 

  46. R. A. Ferrell and J. K. Bhattacharjee, preprint (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Ahlers, G. (1982). Static and Dynamic Critical Phenomena near the Superfluid Transition in 4He. In: Lévy, M., Le Guillou, JC., Zinn-Justin, J. (eds) Phase Transitions Cargèse 1980. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3347-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3347-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3349-4

  • Online ISBN: 978-1-4613-3347-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics