Forecasting of Pollutant Concentration Under Episode Conditions

  • J. M. Fage
  • G. Gallay
  • J. Moussafir
Part of the NATO · Challenges of Modern Society book series (NATS, volume 1)


In case of stagnation conditions (low wind speed, strong temperature inversion) high pollution peaks can occur in the early morning in industrial areas (figure 1).


Heat Flux Mixed Layer Shear Layer Pollutant Concentration Wind Shear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bell T. et Nerkin M. (1977): “Non linear cascade models for fully developed turbulence”. Phys. of Fluids. V. 20; page 345.Google Scholar
  2. Deardorff J.W. (1974) a: “Three dimensional numerical study of the height and mean structure of a heated planetary boundary layer”. Boundary Layer Meteorology, 1, 81 - 106.ADSGoogle Scholar
  3. Deardorff J.W. (1974) b: “Three dimensional numerical study of turbulence in an entraining mixed layer”. Boundary Layer Meteorology, 1, 199 - 226.ADSGoogle Scholar
  4. Donaldson, C du P (1973): “Construction of a dynamic model of the production of atmospheric turbulence and the dispersal of atmospheric pollutants”. Workshop on Micrometeorology. BOSTON. American Meteorological Society, 313 - 390.Google Scholar
  5. Hazel P. (1972): “Numerical studies of the stability of inviscid stratified shear flows”. Journal of Fluids Mechanics, V. 51, Part. 1 39 - 61.ADSMATHCrossRefGoogle Scholar
  6. Lenschow D.H. (1980): “The role of Thermals in the convective boundary layer”. Boundary Layer Meteorology, 19, 509 - 531.ADSCrossRefGoogle Scholar
  7. Mant0n M.J. (1977): “On the structure of convection”. Boundary Layer Meteorology 13, 491 - 503.ADSCrossRefGoogle Scholar
  8. Manton M.J. (1975): “Penetrative convection due to a field of thermals”. J.A.S. 32, 2272 - 2277.Google Scholar
  9. Mellor and Yamada (1974): “A hierarchy of turbulence closure models for planetary boundary layers”. J.A.S. 31, 1791 - 1806.Google Scholar
  10. Lumley J.L. and Khajeh-Nouri B. (1974): “Modeling homogeneous deformation of turbulence”. Advances in Geophysics, Vol. 17, New York. R0SSET R. (1975): “Mécanismes, rôle et paramétrisation de 1T entraînement au sommet de la couche limite planétaire convective”. These univ. CLERMONT FERRAND.Google Scholar
  11. Rosset R. (1975) : “Mecanismes, role et parametrisation de l’entrainement au sommet de la couche limite planetaire convection”. These univ. CLERMONT FERRAND.Google Scholar
  12. Weinstock J. (1978): “On the theory of turbulence in the Buoyancy Subrange of Stably Stratified Flows”. J.A.S., V. 35, 634 - 648.Google Scholar
  13. Wyngaard J.S. and Cote O.R. (1974): “The evolution of a convetive planetary boundary layer: a higher order closure model study”. Boundary Layer Meteorology, 7, 289 - 308.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • J. M. Fage
    • 1
  • G. Gallay
    • 1
  • J. Moussafir
    • 1
  1. 1.BERTIN & CiePlaisirFrance

Personalised recommendations