Skip to main content

Error Bounds for Convex Inequality Systems

  • Chapter

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 27))

Abstract

Using convex analysis, this paper gives a systematic and unified treatment for the existence of a globed error bound for a convex inequality system. We establish a necessary and sufficient condition for a closed convex set defined by a closed proper convex function to possess a globed error bound in terms of a natural residual. We derive many special cases of the main characterization, including the case where a Slater assumption is in place. Our results show clearly the essential conditions needed for convex inequality systems to satisfy global error bounds; they unify and extend a large number of existing results on global error bounds for such systems.1

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Abadie, “On the Kuhn-Tucker theorem”, in J. Abadie, ed., Nonlinear Programming, North Holland Publishing Company, Amsterdam (1967), pp. 21–36.

    Google Scholar 

  2. A. Auslender and J.P. Crouzeix, “Global regularity theorems”, Mathematics of Operations Research 13 (1988) 243–253.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Auslender and J.P. Crouzeix, “Well-behaved asymptotical convex functions”, Analyse Non-Linéaire, Gauthiers-Villars, Paris (1989) pp. 101–122.

    Google Scholar 

  4. A. Auslender, R. Cominetti and J.P. Crouzeix, “Convex functions with unbounded level sets and applications to duality theory”, SIAM Journal on Optimization 3 (1993) 669–687.

    Article  MathSciNet  MATH  Google Scholar 

  5. H.H. Bauschke and J.M. Borwein, “On projection algorithms for solving convex feasibility problems”, SIAM Review 38 (1996) 367–426.

    Article  MathSciNet  MATH  Google Scholar 

  6. H.H. Bauschke, J.M. Borwein and A.S. Lewis, “On the method of cyclic projections for convex sets in Hilbert Space”, Technical report, Center for Experimental & Constructive Mathematics, Simon Fraser University, Victoria (February, 1994 ).

    Google Scholar 

  7. J.V. Burke, “An exact penalization viewpoint of constrained optimization”, SIAM Journal on Control and Optimization 29 (1991) 968–998.

    Article  MathSciNet  MATH  Google Scholar 

  8. J.V. Burke and M.C. Ferris, “Weak sharp minima in mathematical programming”, SIAM Journal on Control and Optimization 31 (1993) 1340–1359.

    Article  MathSciNet  MATH  Google Scholar 

  9. J.V. Burke and P. Tseng, “A unified analysis of Hoffman’s bound via Fenchel duality”, SIAM Journal on Optimization 6 (1996) 265–282.

    Article  MathSciNet  MATH  Google Scholar 

  10. C.C. Chou, K.F. Ng, and J.S. Pang, “Minimizing and stationary sequences of optimization problems”, SIAM Journal on Control and Optimization, forthcoming.

    Google Scholar 

  11. F.H. Clarke, Optimization and Nonsmooth Analysis, John Wiley, New York (1983).

    MATH  Google Scholar 

  12. R.W. Cottle, J.S. Pang, and R.E. Stone, The Linear Complementarity Problem, Academic Press, Boston (1992).

    MATH  Google Scholar 

  13. S. Deng, “Computable error bounds for convex inequality systems in reflexive Banach Spaces”, SIAM Journal on Optimization 7 (1997) 274–279.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Deng, “Perturbation analysis of a condition number for convex systems”, manuscript, Department of Mathematics, Northern Illinois University, DeKalb (revised September 1995 ).

    Google Scholar 

  15. S. Deng, “Global error bounds for convex inequality systems in Banach Spaces”, manuscript, Department of Mathematics, Northern Illinois University, DeKalb (October 1995).

    Google Scholar 

  16. S. Deng and H. Hu, “Computable error bounds for semidefinite programming”, manuscript, Department of Mathematics, Northern Illinois University, DeKalb.

    Google Scholar 

  17. M.C. Ferris and O.L. Mangasarian, “Minimum principle sufficiency”, Mathematical Programming 57 (1992) 1–14.

    Article  MathSciNet  MATH  Google Scholar 

  18. M.C. Ferris and J.S. Pang, “Nondegenerate solutions and related Concepts in affine variational inequalities”, SIAM Journal on Control and Optimization 34 (1996) 244–263.

    Article  MathSciNet  MATH  Google Scholar 

  19. F. Facchinei, A. Fischer, and C. Kanzow, “On the accurate identification of active constraints”, manuscript, Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”, Rome (July 1996).

    Google Scholar 

  20. A.J. Hoffman, “On approximate solutions of systems of linear inequalities”, Journal of Research of the National Bureau of Standards 49 (1952) 263–265.

    MathSciNet  Google Scholar 

  21. J.P. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms, IC II, Springer-Verlag, Berlin (1993).

    Google Scholar 

  22. R.A. Horn and C.A. Johnson, Matrix Analysis, Cambridge University Press, Cambridge (1985).

    MATH  Google Scholar 

  23. D. Klatte, “Lipschitz stability and Hoffman’s error bounds for convex inequality systems”, manuscript, Institut für Operations Research, Universität Zurich (1995).

    Google Scholar 

  24. W. Li, “Error bounds for piecewise convex quadratic programs and applications”, SIAM Journal on Control and Optimization 33 (1995) 1510–1529.

    Article  MathSciNet  MATH  Google Scholar 

  25. W. Li, “Abadie’s constraint qualification, metric regularity, and error bounds for differentiate convex inequalities”, SIAM Journal on Optimization 7 (1997) 966–978.

    Article  MathSciNet  MATH  Google Scholar 

  26. X.D. Luo and Z.Q. Luo, “Extensions of Hoffman’s error bound to polynomial systems”, SIAM Journal on Optimization 4 (1994) 383–392.

    Article  MathSciNet  MATH  Google Scholar 

  27. Z.Q. Luo and J.S. Pang, “Error bounds for analytic systems and their applications”, Mathematical Programming 67 (1995) 1–28.

    Article  MathSciNet  Google Scholar 

  28. Z.Q. Luo, J.S. Pang, and D. Ralph, Mathematical Programs With Equilibrium Constraints, Cambridge University Press, Cambridge (1996).

    Google Scholar 

  29. Z.Q. Luo, J.S. Pang, D. Ralph, and S.Q. Wu, “Exact penalization and stationarity conditions of mathematical programs with equilibrium constraints”, Mathematical Programming, 75 (1996) 19–76.

    Article  MathSciNet  MATH  Google Scholar 

  30. O.L. Mangasarian, “A condition number for differentiable convex inequalities”, Mathematics of Operations Research 10 (1985) 175–179.

    Article  MathSciNet  MATH  Google Scholar 

  31. O.L. Mangasarian, “Error bounds for nondifferentiable convex inequalities under a strong Slater constraint qualification”, Mathematical Programming Technical Report 96-04, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin (July 1996).

    Google Scholar 

  32. O.L. Mangasarian and T.H. Shiau, “Error bounds for monotone linear complementarity problems”, Mathematical Programming 36 (1986) 81–89.

    Article  MathSciNet  MATH  Google Scholar 

  33. M.L. Overton, “On minimizing the maximum eigenvalue of a symmetric matrix”, SIAM Journal on Matrix Analysis and Applications 9 (1988) 256–268.

    Article  MathSciNet  MATH  Google Scholar 

  34. S.M. Robinson, “An application of error bounds for convex programming in a linear space”, SIAM Journal on Control 13 (1975) 271–273.

    Article  MATH  Google Scholar 

  35. R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton (1970).

    Google Scholar 

  36. T. Wang and J.S. Pang, “Global error bounds for convex quadratic inequality systems”, Optimization 31 (1994) 1–12.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lewis, A.S., Pang, JS. (1998). Error Bounds for Convex Inequality Systems. In: Crouzeix, JP., Martinez-Legaz, JE., Volle, M. (eds) Generalized Convexity, Generalized Monotonicity: Recent Results. Nonconvex Optimization and Its Applications, vol 27. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3341-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3341-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3343-2

  • Online ISBN: 978-1-4613-3341-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics