The Penetration of Brackish-Water by the Echinodermata

  • Richard M. Pagett
Part of the Marine Science book series (MR, volume 15)


Various classifications of brackish-water based on physical considerations have been proposed (these include Redeke, 1922, 1933; Valikangas, 1926; Remane, 1934, 1940; Ekman, 1953). Biological considerations have also been applied (Heiden, 1900; Välikangas, 1933). The former author graded regions of differing salinity on the basis of particular assemblages of diatoms. There have been recent reviews concerning the classification of brackish-water (Symposium on the Classification of Brackish Waters, 1959; Remane and Schlieper, 1971). Following Kinne (1964c), it is probably sufficient for the purpose of this presentation to term any body of water with a salinity lying between 0.5%o and 30%o as brackish-water.


Brackish Water Salinity Tolerance Amino Acid Pool Physiological Race Ambient Salinity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beadle, L.C. (1943). Osmotic regulations and the fauna of inland waters. Biological Reviews 18: 172–183.Google Scholar
  2. Bethe, A. (1930). The permeability of the surface of marine animals. Journal of General Physiology 13: 437–444.PubMedCrossRefGoogle Scholar
  3. Bethe, A. (1934). Die Salz-und Wasser - Permeabilitat der Korperoberflachen verschiedener Seetiere in ihrem gegenseitigen Verhältnis. Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere 234: 629–644.CrossRefGoogle Scholar
  4. Binyon, J. (1961). Salinity tolerance and permeability to water of the starfish Asterias rubens L. Journal of the Marine Biological Association UK 41: 161–174.CrossRefGoogle Scholar
  5. Binyon, J. (1962). Ionic regulation and mode of adjustment to reduced salinity of the starfish Asterias rubens L. Journal of the Marine Biological Association UK 42: 49–64.CrossRefGoogle Scholar
  6. Binyon, J. (1966). Salinity Tolerance and Ionic Regulation, In: Physiology of Echinodermata. ed. by R. Boolootian. Chapter 15, 359–377, Interscience, New York.Google Scholar
  7. Binyon, J. (1972a). The effects of diluted sea water upon podial tissues of the starfish Asterias rubens. Comparative Biochemistry and Physiology 41a: 1–6.Google Scholar
  8. Binyon, J. (1972b). Physiology of Echinoderms. Pergamon Press, Oxford.Google Scholar
  9. Binyon, J. (1976). The effects of reduced salinity upon the starfish Asterias rubens L. together with a special consideration of the integument and its permeability to water. Thalassia Jugoslavica 12: 11–20.Google Scholar
  10. Binyon, J. (1978). Some observations upon the chemical composition of the starfish Asterias rubens L. with particular reference to strontium uptake. Journal of the Marine Biological Association UK 58: 441–449.CrossRefGoogle Scholar
  11. Binyon, J. (1980). Osmotic and hydrostatic permeability of the integument of the starfish Asterias rubens L. Journal of the Marine Biological Association UK 60: 627–630.CrossRefGoogle Scholar
  12. Borei, H. and Wernsteadt, C. (1935). Zur Okologie un Variation von Psammechinus miliaris. Arkiv for Zoologi 289: 1–15.Google Scholar
  13. Botazzi, F. (1908). Osmotischer Druck und electrische Leitfahigheit der Flussikeiten der einzelligen pflanzlichen und tierischen Organismen. Ergebnisse der Physiologie 7: 161–402.Google Scholar
  14. Edwards, A. and Edelsten, D. (1977). Deep water renewal of Loch Etive: A Three Basin Scottish Fjord. Estuarine and Coastal Marine Science 5: 575–595.CrossRefGoogle Scholar
  15. Ekman, S. (1953). Zoogeography of the Sea. London, 1–418.Google Scholar
  16. Ellington, W.R. and Lawrence, J.R. (1974). Coelomic fluid volume regulation and isosmotic intracellular regulation by Luidia clathrata (Echinodermata: Asteroidea) in response to hyposmotic stress. Biological Bulletin 146: 20–31.PubMedCrossRefGoogle Scholar
  17. Emerson, D.N. (1969). Influence of salinity of ammonia excretion rates and tissue constituents of euryhaline invertebrates. Comparative Biochemistry and Physiology 29: 1115–1133.CrossRefGoogle Scholar
  18. Fell, H.B. (1948). Echinoderm embryology and the origin of the chordates. Biological Reviews 23: 81–107.PubMedCrossRefGoogle Scholar
  19. Florkin, M. (1962). La regulation isosmotique intracellulaire chez les invertebres marins euryhalins. Bulletin de l’Academie Royale de Belgique 48: 687–694.Google Scholar
  20. Frédéricq, L. (1901). Sur la concentration moleculaire du sang et des tissues chez les animaux aquatiques. Bulletin de l’Academie r. de medecine de Belgique Classe des sciences 8: 428–454.Google Scholar
  21. Freeman, P.J. (1966). Observations on osmotic relationships in the holothurian Opheodesoma spectabilis. Pacific Science 20: 60–69.Google Scholar
  22. Gage, J.D. (1972a). A preliminary survey of the benthic macrofauna and sediments in Lochs Etive and Creran, sea-lochs along the west coast of Scotland. Journal of the Marine Biological Association UK 52: 237–276.CrossRefGoogle Scholar
  23. Gage, J.D. (1974). Shallow water zonation of sea-loch benthos and its relation to hydrographic and other physical features. Journal of the Marine Biological Association UK 54: 223–249.CrossRefGoogle Scholar
  24. Gezelius, G. (1963). Adaptation of the sea urchin Psammechinus miliaris to different salinities. Zoologie Bidrag, 35: 329–337.Google Scholar
  25. Giese, A.C. (1966). On the biochemical constitution of some echinoderms. In: Physiology of Echinodermata ( Boolootian, R.A. ed). Interscience, New York, 822 pp.Google Scholar
  26. Giese, A.C. and Farmanfarmaian, A. (1963). Resistance of the purple sea urchin to osmotic stress. Biological Bulletin of the Marine Biological Laboratory, Woods Hole 124: 182–192.CrossRefGoogle Scholar
  27. Gorzula. S. (1976). The Ecology of Ophiocomina nigra in the Firth of Clyde. Ph.D. Thesis, London.Google Scholar
  28. Heiden, H. (1900). Diatomeen des Conventer Sees bei Doberan etc. Milleilungen aus dem GroBherz. Merkl. - Geol Landesanst 10.Google Scholar
  29. Jeuniaux, C. et al. (1962). Regulation osmotique intracellulaire chez Asterias rubens L. Role du glycolle et de la taurine. Cahiers de biologie marine 3: 107–113.Google Scholar
  30. Kinne. O. (1964b). The effects of temperature and salinity on marine and brackish-water animals. Oceanography and Marine Biology Annual Reviews 2: 281–339.Google Scholar
  31. Kinne, O. (1964c). Non-genetic adaptation to temperature and salinity. Helgolander wissenschaftliche Meeresuntersuchungen 9: 443–458.Google Scholar
  32. Kinne, 0. (1966). Physiological aspects of animal life in estuaries with special reference to salinity. Netherlands Journal of Sea Research 3: (2) 223–244.Google Scholar
  33. Koizumi, T. (1932). Studies on the exchange and the equilibrium of water and electrolytes in a holothurian, Caudina chilensis. Science Reports of the Research Institutes, Tohoku University Series 4: 259–311.Google Scholar
  34. Koizumi, T. (1935). Studies on the exchange and the equilibrium of water and electrolytes in a holothurian, Caudina chilensis. Science Reports of the Research Institutes, Tohoku University Series 10: 269–275.Google Scholar
  35. Kowalski, R. (1955). Untersuchungen zur Biologie des Seesternes Asterias rubens L. in Brackwasser. Kieler Meeresforsuchungen 11: 201–213.Google Scholar
  36. Krogh, A. (1939). Osmoregulation in Aquatic Animals. Cambridge University Press, Cambridge, 242 pp.Google Scholar
  37. Lack, D. (1947). Darwin’s Finches. Cambridge.Google Scholar
  38. Lange, R. (1964). The osmotic adjustment in the echinoderm Stronglocentrotus droebachiensis. Comparative Biochemistry and Physiology 13: 205–216.PubMedCrossRefGoogle Scholar
  39. Lawrence, J.M. (1975). The effect of temperature - salinity combinations on the functional well being of adult Lytechinus variegatus (Lamarck) (Echinodermata, Echinoidea). Journal for Experimental Marine Biology and Ecology 18: 271–275.CrossRefGoogle Scholar
  40. Loosanoff, V.L. (1942). Observations on starfish, Asterias forbesi exposed to sea water of reduced salinities. Anatomical Record Abstract 84: 86.Google Scholar
  41. Loosanoff, V.L. (1945). Effects of sea water of reduced salinity upon starfish, Asterias forbesi of Long Island Sound. Transactions of the Connecticut Academy of Arts and Sciences 36: 813–835.Google Scholar
  42. Macallum, A. (1903). On the inorganic composition of the medusae, Aurelia flavidula and Cyanea artica. Journal of Physiology 29: 213–242.PubMedGoogle Scholar
  43. Maloeuf, N.S.R. (1938). Studies on the respiration and osmoregulation of animals. Zeitschrift fur vergleichende Physiologie 25: 1–28.CrossRefGoogle Scholar
  44. Pagett, R.M. (1978). Some physiological and ecological aspects of the penetration into brackish water by certain members of the Ophiuroidea. Ph.D. Thesis (Unpub.) University of London, 288 pp.Google Scholar
  45. Pagett, R.M. (1980a). Distribution of sodium, potassium and chloride in the ophiuroid, Ophiocomina nigra (Abildgaard). Journal of the Marine Biological Association UK 60: 163–170.CrossRefGoogle Scholar
  46. Pagett, R.M. (1980b). Tolerance to brackish water by Ophiuroids with special reference to a Scottish sea Loch, Loch Etive. In: Echinoderms: Present and Past (Jangoux, M. ed) Proceedings of the European Colloquium on Echinoderms, Brussels, 3–8 September, 1979. Balkema, A.A., Rotterdam, 223–229.Google Scholar
  47. Pearse, A.S. (1936). The migrations of animals from sea to land. Duke University Press, 1–176.Google Scholar
  48. Pearse, J.S. (1967). Coelomic water volume control in the Antarctic sea star Odontaster validus. Nature 216: 1118–1119.Google Scholar
  49. Pearse, J.S. (1969). Slow developing demersal embryos and larvae of the antarctic sea star Odontaster validus. Marine Biology 3: 110–116.Google Scholar
  50. Prosser, C.L. and Brown, F.A. (1961). Comparative Animal Physiology. 2nd Edition Saunders, Philadelphia, 688p.Google Scholar
  51. Redeke, H.C. (1922a). Biologie der niederlandischen Brackwassertypen. Bijdragen tot de dierkunde Amsterdam 22: 239–335.Google Scholar
  52. Redeke, H.C. (1933). Uber den jetzigen Stand unserer Kenntnisse der Flora und Fauna des Brackwassers. Verhandlungen der International en Vereinigung fur Limnologie 6: 46–61.Google Scholar
  53. Reese, E.S. (1966). The complex behaviour of Echinoderms. In: The Physiology of Echinodermata, ed. R.A. Boolootian, 157–218.Google Scholar
  54. Remane, A. (1934a). Die Brackwasserfauna. Verhandlungen der Deutschen zoologischen Gesellschaft, 34–74.Google Scholar
  55. Remane, A. (1940). Einfuhrung in die zoologische dkologie der Nord- und Ostee. In: Tierwelt der Nord-und Ostee, la: 1–238.Google Scholar
  56. Remane, A. (1959). Regionale Verschiedenheiten der Lebewesen gegen- uber dem Salzgehalt und ihre Bedeutung fur die Brackwasser-Einteilung. Arch. Oceanogr. e Limnol. ( Venezia) lis (Suppl ) 35–46.Google Scholar
  57. Remane, A. and Schlieper, C. (1957). Biology of Brackish Water. Die Binnengewasser XXV, Interscience.Google Scholar
  58. Romanes, G.J. and Ewart, J.C. (1881). Observations on the locomotor system of Echinodermata. Philosophical Transactions of the Royal Society 172s 829–885.CrossRefGoogle Scholar
  59. Schlieper, C. (1957). Comparative study of Asterias rubens and Mytilus edulis from the North Sea and the Western Baltic. Annals Biology 33s 117–127.Google Scholar
  60. Schlieper, C. (1967). Genetic and non-genetic cellular resistance adaptation in marine invertebrates. Helgolander wissenschaft- liche Meeresuntersuchungen 14s 482–502.CrossRefGoogle Scholar
  61. Schoener, A. (1972). Fecundity and possible mode of development of some deep-sea ophiuroids. Limnology and Oceanography 17s 193–199.CrossRefGoogle Scholar
  62. Seek, Ch. (1958). Untersuchungen zur Frage der Tonenregulation bei in Brackwasser lebenden Evertebraten. Kieler Meeresforschungen 13s 220–243.Google Scholar
  63. Segerstrale, S. (1957a). Baltic Sea. Memoirs of the Geological Society of America 67s 1–32.Google Scholar
  64. Shumway, S.E. (1977). The effects of fluctuating salinities on four species of asteroid echinoderms. Comparative Biochemistry and Physiology 58as 177–179.Google Scholar
  65. Smith, G.F.M. (1940). Factors limiting distribution and size in the starfish Asterias forbesi. Journal of the Fisheries Research Board of Canada 5s (1) 84–104.CrossRefGoogle Scholar
  66. Stancyk, S.E. (1973). Development of Ophiolepis elegans (Echinodermata s Ophiuroidea) and its implications in the estuarine environment. Marine Biology 21: 7–12.CrossRefGoogle Scholar
  67. Stancyk, S.E. (1975). The life history pattern of Ophiothrix angulata (Ophiuroidea). American Zoologist 15s (3) 793 (abstract).Google Scholar
  68. Stancyk, S.E. and Shaffer, P.L. (1977). The salinity tolerance of Ophiothrix angulata (Say) (Echinodermata s Ophiuroidea) in latitudinally separate populations. Journal for Experimental Marine Biology and Ecology 29s 35–43.CrossRefGoogle Scholar
  69. Stephens, G.C. and Schinske, R.A. (1961). Uptake of amino acids by marine invertebrates. Limnology and Oceanography 6s 175–181.CrossRefGoogle Scholar
  70. Stephens, G.C. and Virkar, R.A. (1966). Uptake or organic material by aquatic invertebrates. IV The influence of salinity on the uptake of amino acids by the brittlestar, Ophiactis arenosa. Biological Bulletin, 35sGoogle Scholar
  71. Stickle, W.B. and Ahokas, R. (1974). The effects of tidal fluctuations of salinity on the perivisceral fluid composition of several echinoderms. Comparative Biochemistry and Physiology 47as 469–476.Google Scholar
  72. Stickle, W.B. and Denoux, G.J. (1976). Effects of insitutidal salinity fluctuations on osmotic and ionic composition of body fluid in Southeastern Alaska Rocky Intertidal Fauna. Marine Biology 37; 125–135.CrossRefGoogle Scholar
  73. Symposium on the classification of Brackish waters. (1959). Venice, 8-14 April 1958, Arch. Oceanogr. Limnol. (Suppl) XI 248 pp.Google Scholar
  74. Thomas, L.P. (1961). Distribution and salinity tolerance in the amphiurid brittlestar, Ophiophragmus filograneous, (Lyman 1875). Bulletin of Marine Science of the Gulf and Caribbean 11: 158–160.Google Scholar
  75. Thorson, G. (1957). Bottom communities (sublittoral or shallow shelf). Memoirs of the Geological Society of America 67: 461–534.Google Scholar
  76. Topping, F.L. and Fuller, J.L. (1942). The accommodation of some marine invertebrates to reduced osmotic pressures. Biological Bulletin of the Marine Biological Laboratory, Woods Hole, 82: 372–384.CrossRefGoogle Scholar
  77. Turner, R.L. (1974). Post-metamorphic growth of the arms in Ophiophragmus filograneous (Echinodermata: Ophiuroidea) from Tampa Bay, Florida, USA. Marine Biology 24: 273–277.CrossRefGoogle Scholar
  78. Turner, R.L. (1980). Salinity tolerance of the brackish-water echinoderm Ophiophragmus filograneus (Ophiuroidea). Marine Ecology - Progress Series 2: 249–256.CrossRefGoogle Scholar
  79. Tyler, P. (1976). The ecology and reproductive biology of the genus Ophiura with special reference to the Bristol Channel. Ph.D. Thesis Swansea, 247 pp.Google Scholar
  80. Ussing, H.H. (1949). Transport of ions across cellular membranes. Physiological Reviews, Washington 29: 127–155.Google Scholar
  81. Välikangas, J. (1926). Planktologische Untersuchungen im Hafengebiet von Helsingfors. Acta Zoologia Fennica 1: 1–277.Google Scholar
  82. Välikangas, J. (1933). Uber die Biologie der Ostee als Brackwasser- gebiet. Verhandlungen der Internationalen Vereinigung fur Limnologie 6: 62–112.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Richard M. Pagett
    • 1
  1. 1.Department of Earth SciencesThe UniversityLeedsUK

Personalised recommendations