Mitochondria pp 199-233 | Cite as

Mitochondrial Transport Systems

  • Alexander Tzagoloff
Part of the Cellular Organelles book series (BLSC)


The specialized role of mitochondria in intermediary metabolism requires that only certain substrates, cofactors, and metals be accessible to their interior compartments. Of the substrates that must be capable of entering the matrix space, the most important are O2, H2O, ADP, phosphate, pyruvate, and fatty acids. At the same time, products of mitochondrial oxidations and phosphorylation must have a means of exiting from the organelle. These include CO2 and ATP. Virtually all mitochondria, irrespective of their source, have been shown to be either freely permeable or to have specific transport systems that accommodate an efficient passage of these essential metabolites across the permeability barriers separating the matrix space from the surrounding cytoplasm.


Adenine Nucleotide Carbamyl Phosphate Permeant Anion Bongkrekic Acid Adenine Nucleotide Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Readings

  1. Amoore, R. E., and Bartley, W. (1958) The permeability of isolated rat liver mitochondria to sucrose, sodium chloride and potassium chloride at 0°, Biochem. J. 69: 223.PubMedGoogle Scholar
  2. Brierley, G. P. (1974) Passive permeability and energy-linked ion movements in isolated heart mitochondria, Ann. N.Y. Acad. Sei. 227: 398.CrossRefGoogle Scholar
  3. Brierley, G. P. (1976) Monovalent cation transport by mitochondria, in Mitochondria: Bioenergetics, Biogenesis and Membrane Structure ( L. Packer and A. Gomez-Puyou, eds.), Academic Press, New York, pp. 3–20.Google Scholar
  4. Brunnengraber, H., and Lowenstein,J. M. (1973) Effect of hydroxycitrate on ethanol metabolism, FEBS Lett. 36: 130.CrossRefGoogle Scholar
  5. Chance, B. (1965) The energy-linked reaction of calcium with mitochondria, J. Biol. Chem. 240: 2729.PubMedGoogle Scholar
  6. Chance, B., and Montai, M. (1971) Ion translocation in energy-conserving membrane systems, in Current Topics in Membranes and Transport (F. Bronner and A. Kleinzeller, eds.), Vol. 2, Academic Press, New York, pp. 99–156.CrossRefGoogle Scholar
  7. Chappell, J. B. (1968) Systems for the transport of substrates into mitochondria, Br. Med. Bull. 24: 150.PubMedGoogle Scholar
  8. Chappell, J. B., and Crofts, A. R. (1966) Ion transport and reversible volume changes of isolated mitochondria, in Regulation of Metabolic Processes in Mitochondria ( J. M. Tager, S. Papa, E. Quagliarello and E. C. Slater, eds.) Elsevier, Amsterdam, pp. 293–316.Google Scholar
  9. Chappell, J. B., McGivan, J. D., and Crompton, M. (1972) The anion transporting systems of mitochondria and their biological significance, in The Molecular Basis of Biological Transport ( J. F. Woessner, Jr. and F. Huijing, eds.), Academic Press, New York, pp. 55–81.Google Scholar
  10. Fonyo, A. (1968) Phosphate carrier of rat liver mitochondria. Its role in phosphate outflow, Biochem. Biophys. Res. Commun. 32: 624.PubMedCrossRefGoogle Scholar
  11. Gamble, J. G., and Lehninger, A. L. (1973) Transport of ornithine and citrulline across the mitochondrial membrane, J. Biol. Chem. 248: 610.PubMedGoogle Scholar
  12. Grunnet, N. (1970) Oxidation of extramitochondrial NADH by rat liver mitochondria. Possible role of acetyl-SCoA elongation enzymes, Biochem. Biophys. Res. Commun. 41: 909.PubMedCrossRefGoogle Scholar
  13. Heidt, H. W., Klingenberg, M., and Milovancev, M. (1972) Differences between the ATP/ADP ratios in the mitochondrial matrix and extramitochondrial space, Eur. J. Biochem. 30: 434.CrossRefGoogle Scholar
  14. Klingenberg, M. (1970) Metabolite transport in mitochondria. An example for intracellular membrane function, in Essays in Biochemistry (P. N. Campbell and F. Dickens, eds.), Vol. 6, Academic Press, New York, pp. 117–159.Google Scholar
  15. Klingenberg, M. (1976) The adenine nucleotide transport of mitochondria, in Mitochondria: Bioenergetics, Biogenesis and Membrane Structure ( L. Packer and A. Gomez-Puyou, eds.), Academic Press, New York, pp. 127–150.Google Scholar
  16. Lardy, H. A., Graven, S. N., and Estrada-O, S. (1967) Specific induction and inhibition of cation and anion transport in mitochondria, Fed. Proc. 26: 1355.PubMedGoogle Scholar
  17. Lehninger, A. L. (1971) The transport systems of mitochondria membranes, in Biomembranes (L. A. Manson, ed.), Vol. 2., Academic Press, New York, pp. 147–164.Google Scholar
  18. Lehninger, A. L., Carafoli, E., and Rossi, C. S. (1967) Energy-linked ion movements in mitochondria, Adv. Enzymol. 29: 259.PubMedGoogle Scholar
  19. Lehninger, A. L., Brand, M. D., and Reynafarje, B. (1975) Pathways and stoichiometry of H+ and Ca++ transport coupled to mitochondrial electron transport, in Electron Transfer Chains and Oxidative Phosphorylation ( E. Quagliariello, S. Papa, F. Palmieri, E. C. Slater and N. Siliprandi, eds.) North-Holland, Amsterdam, pp. 329–334.Google Scholar
  20. Meijer, A. J., and Van Dam, K. (1974) The metabolic significance of transport in mitochondria, Biochim. Biophys. Acta 346: 213.PubMedGoogle Scholar
  21. Mitchell, P. (1970) Reversible coupling between transport and chemical reactions, in Membranes and Ion Transport (E. E. Bittar, ed.), Vol. 1, Wiley-Interscience, New York, pp. 192–256.Google Scholar
  22. Palmieri, F., Quagliariello, E., and Klingenberg, M. (1970) Quantitative correlation between the distribution of anions and the pH difference across the mitochondrial membrane, Eur. J. Biochem. 17: 230.PubMedCrossRefGoogle Scholar
  23. Pressman, B. C. (1970) Energy-linked transport in mitochondria, in Membranes of Mitochondria and Chloropiasts ( E. Racker, ed.), Von Nostrand Reinhold, New York, pp. 213–250.Google Scholar
  24. Stein, W. D. (1967) The Movement of Molecules Across Cell Membranes, Academic Press, New York.Google Scholar
  25. Williamson, J. R. (1976) Mitochondrial metabolism and cell regulation, in Mitochondria: Bioener- getics, Biogenesis and Membrane Structure ( L. Packer and A. Gomez-Puyou, eds.), Academic Press, New York, pp. 79–108.Google Scholar
  26. Williamson, J. R., Anderson, J., and Browning, E. T. (1970) Inhibition of gluconeogenesis by butyl-malonate in perfused rat liver, J. Biol. Chem. 245: 1717.PubMedGoogle Scholar
  27. Zebe, E., Delbrück, A., and Bücher, T. (1959) Uber den Glycerin-l-P Cyclus im Flugmuskel von Locusta migratoria, Biochem. Z. 331: 254.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Alexander Tzagoloff
    • 1
  1. 1.Columbia UniversityNew YorkUSA

Personalised recommendations