Skip to main content

Evolution of Mitochondrial Studies

  • Chapter
Mitochondria

Part of the book series: Cellular Organelles ((BLSC))

Abstract

The notion of the compartmentalization of cellular functions, often by means of different organelles, arose from the convergence of two independent lines of investigation, one concentrating on cytological observations of cell inclusions and the other on biochemical studies of various metabolic pathways. The convergence occurred during the period of 1940–1960 when many important technical advances were made in the fractionation and isolation of reasonably homogeneous subcellular components. This meant that it became possible in many instances to assign specific functions to particular organelles or compartments of the cell. Today, every student of biology is aware of the fact that the mitochondrion is a specialized organelle whose primary functions are the conservation of oxidatively derived energy and its utilization for ATP synthesis. Some of the earlier developments that led to this recognition and other more recent highlights of studies of mitochondrial structure and function will be traced briefly in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Readings

  • Altman, R. (1890) Die Elementarorganismen und Ihre Beziehungen zur den Zellen, Veit Co., Keipzig.

    Google Scholar 

  • Annan, G., Banga, I., Blazsó, A., Bruckner, V., Laki, K., Straub, B., and Szent-Gyorgyi, A. (1935) Über die Bedeutung der Fumarsäure für die tierische Gewebeatmung, Z. Physiol. Chem. 244: 105.

    Article  Google Scholar 

  • Beinert, H., and Sands, R. H. (1959) On the function of iron in DPNH cytochrome c reductase, Biochem. Biophys. Res. Commun. 1: 171.

    Article  CAS  Google Scholar 

  • Belitser, V. A., and Tsibakova, E. T. (1939) The mechanism of phosphorylation associated with respiration, Biokhimiia 4: 516.

    Google Scholar 

  • Benda, C. (1898) Weitere Mitteilungen über die Mitochondria, Verh. Physiol. Ges. Berlin 376–383.

    Google Scholar 

  • Bensley, R. R., and Hoerr, N. L. (1934) Studies on cell structure: VI. The preparation and properties of mitochondria, Anat. Rec. 60: 251.

    Article  CAS  Google Scholar 

  • Chance, B., and Williams, G. R. (1955) A method for the localization of sites for oxidative phosphorylation, Nature 176: 63.

    Article  Google Scholar 

  • Chance, B., and Williams, G. R. (1956) The respiratory chain and oxidative phosphorylation, Adv. Enzymol. 17: 65.

    CAS  Google Scholar 

  • Claude, A. (1946) Fractionation of mammalian liver cells by differential centrifugation: II. Experimental procedures and results, J. Exp. Med. 84: 61.

    Article  CAS  Google Scholar 

  • Coen, D., Deutsch, J., Netter, P., Petrochilo, E., and Slonimski, P. P. (1970) Mitochondrial genetics. I. Methodology and phenomenology, in Control of Organelle Development, Symposia of the Society for Experimental Biology (P. L. Miller, ed.), Vol. 24, Cambridge University Press, London, pp. 449–496.

    Google Scholar 

  • Crane, F. L., Lester, R. L., Widmer, C., and Hatefi, Y. (1959) Studies on the electron transfer system. XVIII. Isolation of coenzyme Q from beef heart and beef heart mitochondria. Biochim. Biophys. Acta. 32: 73.

    Article  PubMed  CAS  Google Scholar 

  • Cowdry, E. V. (1953) Historical background of research on mitochondria, J. Histochem. Cytochem. 1: 183.

    Article  PubMed  CAS  Google Scholar 

  • Ephrussi, B., Hottinguer, H., and Chimenes, A. M. (1949) Action de racriflavine sur les levures. I. La mutation “petite colonie,” Ann. Inst. Pasteur 76: 351.

    Google Scholar 

  • Fernandez-Moran, H. (1962) Cell membrane ultrastructure. Low temperature electron microscopy and X-ray diffraction studies of lipoprotein components in lamellar systems, Circulation 26: 1039.

    PubMed  CAS  Google Scholar 

  • Green, D. E., Loomis, W. F., and Auerbach, V. H. (1948) Studies on the cyclophorase system. I. The complete oxidation of pyruvic acid to carbon dioxide and water, J. Biol. Chem. 172: 389.

    PubMed  CAS  Google Scholar 

  • Green, D. E., and Tzagoloff, A. (1966) The mitochondrial electron transfer chain, Arch. Biochem. Biophys. 116: 293.

    Article  PubMed  CAS  Google Scholar 

  • Hatefi, Y., Haavik, A. G., and Griffiths, D. E. (1962) Studies of the electron transfer system. XL. Preparation and properties of mitochondrial DPNH-coenzyme Q reductase; XLI. Reduced coenzyme Q-cytochrome c reductase, J. Biol. Chem. 237: 1676, 1681.

    PubMed  CAS  Google Scholar 

  • Hobeboom, G. H., Schneider, W. C., and Palade, G. E. (1948) Cytochemical studies of mammalian tissue. I. Isolation of intact mitochondria from rat liver; some biochemical properties of mitochondria and submicroscopic particulate material, J. Biol. Chem. 172: 619.

    Google Scholar 

  • Kalckar, H. (1937) Phosphorylation in kidney tissue, Enzymologia 2: 47.

    CAS  Google Scholar 

  • Keilin, D. (1925) Cytochrome, a respiratory pigment common to animals, yeast and higher plants, Proc. R. Soc. Lond. [Biol.] 98: 312.

    Article  Google Scholar 

  • Keilin, D., and Hartree, E. F. (1939) Cytochrome and cytochrome oxidase, Proc. R. Soc. Lond. [BM] 127: 167.

    Article  CAS  Google Scholar 

  • Kennedy, E. P., and Lehninger, A. L. (1949) Oxidation of fatty acids and tricarboxylic acid cycle intermediates by isolated rat liver mitochondria, J. Biol. Chem. 179: 957, 964, 969.

    Google Scholar 

  • Krebs, H. A., and Johnson, W. A. (1937) The role of citric acid in intermediary metabolism in animal tissue, Enzymologia 4: 148.

    CAS  Google Scholar 

  • Lamb, A. J., Clark-Walker, G. D., and Linnane, A. W. (1968) The biogenesis of mitochondria. 4. The differentiation of mitochondrial and cytoplasmic protein synthesizing systems in vitro by antibiotics, Biochim. Biophys. Acta 161: 415.

    PubMed  CAS  Google Scholar 

  • Lardy, H. A., Johnson, D., and McMurray, W. C. (1958) Antibiotics as tools for metabolic studies. I. A survey of toxic antibiotics in respiratory, phosphorylative and glycolytic systems, Arch. Biochem. Biophys. 78: 587.

    Article  PubMed  CAS  Google Scholar 

  • Lehninger, A. L. (1964) The Mitochondrion, W. A. Benjamin, New York.

    Google Scholar 

  • MacMunn, C. A. (1887) Researches on myohaematin and the histohaematins, Phil. Trans. R. Soc. Lond. 177: 267.

    Google Scholar 

  • Martius, C., and Knoop, F. (1937) Der physiologische Abbau der Citronsäure, Z. Physiol. Chem. 246: 1.

    Article  Google Scholar 

  • McLean, J. R., Cohn, G. L., Brandt, I. K., and Simpson, M. V. (1958) Incorporation of labeled amino acids into the protein of muscle and liver mitochondria, J. Biol. Chem. 233: 657.

    PubMed  CAS  Google Scholar 

  • Michaelis, L. (1900) Die vitale Färbung, eine Darstellungsmethode der Zellgrana, Arch. Mikrosk. Anat. 55: 558.

    Google Scholar 

  • Mitchell, P. (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism, Nature 191: 105.

    Article  Google Scholar 

  • Nass, M. M. K., Nass, S., and Afzelius, B. A. (1965) The general occurrence of mitochondrial DNA, Exp. Cell Res. 37: 190.

    Article  Google Scholar 

  • Ochoa, S. (1940) Nature of oxidative phosphorylation in brain tissue, Nature 146: 267.

    Article  CAS  Google Scholar 

  • Palade, G. E. (1953) An electron microscope study of the mitochondrial structure, f. Histochem. Cytochem. 1: 188.

    Article  CAS  Google Scholar 

  • Pullman, M. E., Penefsky, H. S., Datta, A., and Racker, E. (1960) Partial resolution of enzymes catalyzing oxidative phosphorylation. I. Purification and properties of soluble, dinitrophenol-stimulated adenosine triphosphatase, J. Biol. Chem. 235: 3322.

    PubMed  CAS  Google Scholar 

  • Racker, E., and Kandrach, A. (1973) Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXXIX. Reconstitution of the third segment of oxidative phosphorylation, J. Biol. Chem. 248: 5841.

    PubMed  CAS  Google Scholar 

  • Racker, E., Tyler, D. D., Estabrook, R. W., Conover, T. E., Parsons, D. F., and Chance, B. (1965) Correlation between electron transport activity, ATPase and morphology of submitochondrial particles, in Oxidases and Related Redox Systems ( T. E. King, H. S. Mason and M. Morrison, eds.), John Wiley & Sons, New York, pp. 1077–1094.

    Google Scholar 

  • Roodyn, D. B., Reis, P. J., and Work, T. S. (1961) Protein synthesis in mitochondria, Biochem. J. 80: 9.

    PubMed  CAS  Google Scholar 

  • Schatz, G., Haslbrunner, E., and Tuppy, H. (1964) Deoxyribonucleic acid associated with yeast mitochondria, Biochem. Biophys. Res. Commun. 15: 127.

    Article  CAS  Google Scholar 

  • Slater, E. C. (1953) Mechanism of phosphorylation in the respiratory chain, Nature 172: 59.

    Article  Google Scholar 

  • Tzagoloff, A., Akai, A., Needleman, R. B., and Zulch, G. (1975) Assembly of the mitochondrial membrane system. Cytoplasmic mutants of Saccharomyces cerevisiae with lesions in enzymes of the respiratory chain and in the mitochondrial ATPase, J. Biol Chem. 250: 8236.

    PubMed  CAS  Google Scholar 

  • Warburg, O. (1949) Heavy Metal Prosthetic Groups and Enzyme Action, Oxford University Press, London.

    Google Scholar 

  • Warburg, O., and Negelein, E. (1929) Über das Absorptionsspektrum des Atmungsferment, Biochem. Z. 214: 64.

    CAS  Google Scholar 

  • Wieland, H. (1932) On the Mechanism of Oxidation, Yale University Press, New Haven.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Tzagoloff, A. (1982). Evolution of Mitochondrial Studies. In: Mitochondria. Cellular Organelles. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3294-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3294-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3296-1

  • Online ISBN: 978-1-4613-3294-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics