Skip to main content

Some Partial Differential Equations in Clifford Analysis

  • Chapter
Complex Methods for Partial Differential Equations

Part of the book series: International Society for Analysis, Applications and Computation ((ISAA,volume 6))

Abstract

Partial differential equations occuring in mathematical physics can usually be treated with Clifford analytic methods. These methods are not restricted to elliptic equations. Multidimensional analogues of the Beltrami equation in certain Clifford algebras turn out to be elliptic or hyperbolic. A parabolic equation related to the heat equation is investigated in a Clifford algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Begehr, H.: Complex analytic methods for partial differential equations. World Scientific, Singapore, 1994.

    MATH  Google Scholar 

  2. Begehr, H., Gilbert, R.P.: Transformations, transmutations and kernel functions, 2. Longman, Harlow, 1993.

    MATH  Google Scholar 

  3. Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman, London, 1982.

    MATH  Google Scholar 

  4. Courant, R., Hilbert, D.: Methods of mathematical physics, II. Intersciences Publishers, New York, 1962.

    MATH  Google Scholar 

  5. Hobson, E.W.: On Green’s functions for a circular disc, with applications to electrostatic problems. Trans. Cambridge Math. Soc. 18 (1900), 277–291.

    Google Scholar 

  6. Mülthei, M.: Behandlung eines Goursat Problems mit einer verallgemeinerten Riemannschen Methode. ZAMM 53 (1973), 583–592.

    Article  Google Scholar 

  7. Obolashvili, E.: Effective solutions of some space problems of elasticity. Revue Roumaine Math. Pures Appl. 11 (1966), 965–972 (Russian).

    MATH  Google Scholar 

  8. Obolashvili, E.: Partial differential equations in Clifford analysis. Addison Wesley Longman, Harlow, 1998.

    MATH  Google Scholar 

  9. Obolashvili, E.: Beltrami equations and generalizations in Clifford analysis, (to appear).

    Google Scholar 

  10. Riesz, M.: Clifford numbers and spinors. Lecture Notes 38, Univ. of Maryland, 1958.

    Google Scholar 

  11. Vekua, I.N.: Generalized Analytic Functions. Pergamon Press, Oxford, 1962.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic Publishers

About this chapter

Cite this chapter

Obolashvili, E. (1999). Some Partial Differential Equations in Clifford Analysis. In: Begehr, H.G.W., Celebi, A.O., Tutschke, W. (eds) Complex Methods for Partial Differential Equations. International Society for Analysis, Applications and Computation, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3291-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3291-6_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3293-0

  • Online ISBN: 978-1-4613-3291-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics