Skip to main content

Semi-Markov Queues with Heavy Tails

  • Chapter

Abstract

We consider queues with a sub-exponential heavy-tailed service time distribution B. Classical results stating that the tails of the steady-state waiting time, resp. the maximal waiting time within a regenerative cycle, are proportional to \(\int_x^\infty {\bar B(y)dy,{\text{resp}}{\text{. }}\bar B(y) = 1 - B(y),} \), are extended to various semi-Markov queues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Abate, G.L. Choudhury & W. Whitt (1994) Asymptotics for steady-state tail probabilities in structured Markov queueing models. Stochastic Models 10, 99–143.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Asmussen (1987) Applied Probability and Queues. John Wiley & Sons, Chichester New York.

    MATH  Google Scholar 

  3. S. Asmussen (1995) Stationary distributions via first passage times. Advances in Queueing: Models, Methods & Problems (J. Dshalalow ed.), 79–102. CRC Press, Boca Raton, Florida.

    Google Scholar 

  4. S. Asmussen (1998a) Sub-exponential asymptotics for stochastic processes: extremal behavior, stationary distributions and first passage probabilities. Ann. Appl Probab. 8, 354–374.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Asmussen (1998b) Extreme value theory for queues via cycle maxima. Extremes 1 (2) (in print).

    Google Scholar 

  6. S. Asmussen, C. Kliippelberg & K. Sigman (1998) Sampling at sub-exponential times, with queueing applications. Stoch. Proc. Appl. (to appear).

    Google Scholar 

  7. S. Asmussen, L. Floe Henriksen & C. Kliippelberg (1994) Large claims approximations for risk processes in a Markovian environment. Stoch. Proc. Appl. 54, 29–43.

    Article  MATH  Google Scholar 

  8. S. Asmussen & B. Hojgaard (1996) Finite horizon ruin probabilities for Markov-modulated risk processes with heavy tails. Th. Random Processes 2, 96–107.

    Google Scholar 

  9. S. Asmussen & G. Koole (1993) Marked point processes as limits of Markovian arrival streams. J. Appl. Probab. 30, 365–372.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Asmussen & J.R. M0ller (1998) Tail asymptotics for M/G/l type queueing models with sub-exponential increments. Submitted to QUESTA.

    Google Scholar 

  11. S. Asmussen, H. Schmidli & V. Schmidt (1998) Tail approximations for non-standard risk and queueing processes with sub-exponential tails. Adv. Appl. Probab. (to appear).

    Google Scholar 

  12. B. von Bahr (1975) Asymptotic ruin probabilities when exponential moments do not exist. Scand. Act. J. 1975, 6–10.

    MATH  Google Scholar 

  13. N. H. Bingham, C. M. Goldie & J. L. Teugels (1987). Regular Variation. Encyclopedia of Mathematics and its Applications 27. Cambridge University Press.

    Google Scholar 

  14. P. Embrechts, C. Kliippelberg & T. Mikosch (1997) Modelling Extremal Events for Finance and Insurance. Springer, Heidelberg.

    MATH  Google Scholar 

  15. P. Embrechts & N. Veraverbeke (1982). Estimates for the probability of ruin with special emphasis on the possibility of large claims. Insurance: Mathematics and Economics 1, 55–72.

    Article  MathSciNet  MATH  Google Scholar 

  16. W. Feller (1971). An Introduction to Probability Theory and its Applications II ( 2nd ed. ). Wiley, New York.

    MATH  Google Scholar 

  17. P. Glasserman & S.-G. Kou (1995) Limits of first passage times to rare sets in regenerative processes. Ann. Appl. Probab. 5, 424–445.

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Heath, S. Resnick & G. Samorodnitsky (1997) Patterns of buffer overflow in a class of queues with long memory in the input stream. Ann. Appl Probab 7, 1021–1057.

    Article  MathSciNet  MATH  Google Scholar 

  19. P.R. Jelenkovic k A.A. Lazar (1998) Sub-exponential asymptotics of a Markov-modulated random walk. J. Appl Probab. 35(2) (to appear).

    Google Scholar 

  20. J. Keilson (1966) A limit theorem for passage times in ergodic regenerative processes. Ann. Math. Statist. 37, 866–870.

    Article  MathSciNet  MATH  Google Scholar 

  21. W. Leland, M. Taqqu, W. Willinger & D. Wilson (1994) On the self-similar nature of Ethernet traffic. IEEE/ACM Trans. Netw. 2, 1–15.

    Article  Google Scholar 

  22. M.F. Neuts (1977) A versatile Markovian point process. J. Appl. Probab. 16, 764–779.

    Article  MathSciNet  Google Scholar 

  23. M.F. Neuts (1989) Structured Stochastic Matrices of M/G/l Type and Their Applications. Marcel Dekker.

    Google Scholar 

  24. M.F. Neuts (1995) Matrix-analytic methods in queueing theory. Advances in Queueing: Models, Methods and Problems (J.H. Dshalalow, ed.), 265–292. CRC Press, Boca Raton.

    Google Scholar 

  25. A.G. Pakes (1975) On the tail of waiting time distributions. J. Appl. Probab. 12, 555–564.

    Article  MathSciNet  MATH  Google Scholar 

  26. V. Paxson & S. Floyd (1995) Wide area traffic: the failure of Poisson modelling. IEEE/ACM Trans. Netw. 3, 226–244.

    Article  Google Scholar 

  27. V. Ramaswami (1997) Matrix analytic methods: A tutorial overview with some extensions and new results. Matrix-Analytic Methods in Stochastic Models (S.R. Chakravarthy & A.S. Alfa, eds.), 261–296. Marcel Dekker.

    Google Scholar 

  28. S.I. Resnick (1997) Heavy tail modeling and teletraffic data. Ann. Statist. 25, 1805–1869.

    Article  MathSciNet  MATH  Google Scholar 

  29. M.S. Taqqu ;amp; J. Levy (1986) Using renewal processes to generate long-range dependence and high variability. Dependence in Probability and Statistics (E. Eberlein k M.S. Taqqu, eds.), 73–89. Birkhauser, Boston.

    MATH  Google Scholar 

  30. W. Willinger, M. Taqqu, W.E. Leland & D.V. Wilson (1995) Self- similarity in high-speed packet traffic: analysis and modeling of Ethernet traffic measurements. Statistical Science 10, 67–85.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic Publishers

About this chapter

Cite this chapter

Asmussen, S. (1999). Semi-Markov Queues with Heavy Tails. In: Janssen, J., Limnios, N. (eds) Semi-Markov Models and Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3288-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3288-6_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3290-9

  • Online ISBN: 978-1-4613-3288-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics