Advertisement

Impact of Defects Formed in Neutron Transmutation Doping of Silicon on Device Performance

  • John C. Corelli
  • James W. Corbett

Abstract

Defects introduced into silicon material as a result of neutron transmutation doping (NTD) cover the entire range of level of complexity in which the defect inventory can include relatively simple point defects to large disordered regions of 500Å size up to <110> rod-like defects 10µm long 200Å diameter. The wide spectrum of defect specie occurs since the dominant defect producer, the fast neutrons, can impart on the average ∿50keV of recoil energy to a silicon atom while recoiling silicon atoms subsequent to neutron capture and gamma radiation emission can have energies in the ∿400 to 900eV range. In this paper a review will be given on properties of defects introduced in silicon specific to NTD. The approach will be to describe the origin of defects and their effects on extrinsic photoconductivity, optical properties, transmission electron microscopy and electron spin resonance, including defect symmetry properties and the response and alteration of defects with heat treatment. A discussion is given on the nature of unannealable defect microstructure in NTD Si. An analysis of many experiments suggest that it may be advantageous to perform irradiation in NTD Si at temperatures of 500–600°C. Finally, an attempt will be made to show how the defects can effect the operation of devices, eg: high power thyristors, transistors, infrared detecting devices and very large scale integrated circuit systems.

Keywords

Charge State Deep Level Transient Spectroscopy Very Large Scale Integrate Probe Light Thermal Neutron Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. T. Young, J. W. Cleland, R. F. Wood and M. M. Abraham, J. Appl. Phys. 49 (a), 4752 (1978).CrossRefGoogle Scholar
  2. 2.
    J. M. Messe and P. J. Glairon, Neutron Transmutation Doping in Semiconductors, J. M. Meese Ed., Plenum Press (NY) p 109–128, p 291–305 (1979).Google Scholar
  3. 3.
    J. W. Cleland, P. H. Fleming, R. D. Westbrook, R. F. Wood and R. T. Young, ibid, p 261–279 (this paper contains references to earlier works).Google Scholar
  4. 4.
    B. C. Larson, R. T. Young, and J. Narayan, ibid p. 281–290.Google Scholar
  5. 5.
    B. J. Baliga and A. E. Evwaraye, ibid, p. 317–328.Google Scholar
  6. 6.
    H. Y. Fan and A. K. Ramdas, J. Appl. Phys. 30, 1127 (1959).CrossRefGoogle Scholar
  7. 7.
    R. N. Thomas, T. T. Braggins, H. M. Hobgood and W. J. Takei, J. Appl. Phys. 49, 5, 2811 (1978).CrossRefGoogle Scholar
  8. 8.
    H. M. Hobgood, T. T. Braggins, J. C. Swartz and R. N. Thomas, ibid (Reference 2 above) p. 65–90.Google Scholar
  9. 9.
    V. S. Vavilov, A. F. Plotnikov and V. D. Tkachev, Soviet Phys. -Solid State 4, 2522 (1963).Google Scholar
  10. 10.
    V. D. Tkachev, A. F. Plotnikov and V. S. Vavilov, Soviet Phys.- Solid State 5, 1322 (1964).Google Scholar
  11. 11.
    V.S. Vavilov, Soviet Phys.-Uspo 7, 797 (1965).CrossRefGoogle Scholar
  12. 12.
    L. J. Cheng, Appl. Phys. Letters 24A, 729 (1967).Google Scholar
  13. 13.
    A. H. Kalma and J. C. Corelli, Phys. Rev. 173, 3, (734–745) (1968)CrossRefGoogle Scholar
  14. 14.
    R. T. Young and J. C. Corelli, Phys. Rev. 5B, #4, 1455–1467 (1972)Google Scholar
  15. 15.
    R. F. Konopleva, S. R. Novikov and E. E. Rubinova, Soviet Phys.- Solid State 8 (2), 264 (1966).Google Scholar
  16. 16.
    R. F. Konopleva and S. R. Novikov, Soviet Physics-Semiconductors 2 (9), 1080 (1969).Google Scholar
  17. 17.
    V. A. Vorobeichik, R. F. Konopleva, S. R. Novikov and E. E. Rubinova Soviet Physics Semicond. 5 (3), 397 (1971).Google Scholar
  18. 18.
    R. C. Newman and D. H. J. Totterdell, J. Phys. C. Solid State Phys. 8, 3944 (1979).Google Scholar
  19. 19.
    H. J. Stein, J. Electronic Mat. 4, 159 (1975).Google Scholar
  20. 20.
    J. C. Corelli, D. Mills, R. Gruver, D. Cuddeback, Y. H. Lee and J. W. Corbett, Radiation Damage and Defects in Semiconductors, Inst. Phys. Conf. Ser 31, 251 (1977).Google Scholar
  21. 21.
    Y. P. Koval, V. N. Mordkovich, E. M. Temper and V. A. Kharchenko, Sov. Phys. Semicond. 6, 1152 (1973).Google Scholar
  22. 22.
    C. S. Chen, R. V. Lowell and J. C. Corelli, Radiation Damage and Defects in Semiconductors, Inst. Phys. Conf. Ser. 6, 210 (1973)Google Scholar
  23. 23.
    V. N. Mordkovich, S. P. Solov’ev, E. M. Temper and V. A. Kharchenko, Sov. Phys.-Semicond. 8, 666.Google Scholar
  24. 24.
    Y. H. Lee, P. B. Brosious and J. W. Corbett, Radiat. Effects 22, 169 (1974).CrossRefGoogle Scholar
  25. 25.
    Y. H. Lee, N. N. Gerasimenko and J. W. Corbett, Phys. Rev. B14, 4506 (1976).CrossRefGoogle Scholar
  26. 26.
    D. F. Daly, J. Appl. Phys. 42, 864 (1971).CrossRefGoogle Scholar
  27. 27.
    K. L. Brower, Phys. Rev. B14, 872 (1976).Google Scholar
  28. 28.
    L. J. Cheng, J. C. Corelli, J. W. Corbett and G. D. Watkins, Phys. Rev. 152, 555 (1966).CrossRefGoogle Scholar
  29. 29.
    M. T. Mitchell, J. C. Corelli and J. W. Corbett, Radiation Damage and Defects in Semiconductors, Inst. Phys. Conf. Ser. 46, 317 (1979).Google Scholar
  30. 30.
    F. Carton-Merlet, B. Pajot and P. Vajda, ibid p 311 (Ref.#29)Google Scholar
  31. 31.
    M. T. Mitchell and J. C. Corelli, Radiat. Effects 41, 57 (1979).CrossRefGoogle Scholar
  32. 32.
    W. Jung and G. S. Newell, Phys. Rev. 132, 648 (1963).Google Scholar
  33. 33.
    Y. H. Lee, private communication.Google Scholar
  34. 34.
    Y. H. Lee, Y. M. Kim and J. W. Corbett, Radiat. Effects, 15, 77 (1972).CrossRefGoogle Scholar
  35. 35.
    D. F. Daly, J. Appl. Phys. 42, 864 (1971).CrossRefGoogle Scholar
  36. 36.
    H. J. Stein, (ibid Ref. 2 above) p. 229–248.Google Scholar
  37. 37.
    T. Y. Tan, (to be published).Google Scholar
  38. 38.
    S. I. Romanov and L. S. Smirnov, Radiat Effects 37, 121 (1978).CrossRefGoogle Scholar
  39. 39.
    W. K. Wu and J. Washburn, J. Appl. Phys. 48(10), 372 (1977).Google Scholar
  40. 40.
    W. K. Wu and J. Washburn, J. Appl. Phys. 48(9), 3747 (1977).Google Scholar
  41. 41.
    T. Y. Tan and J. W. Corbett (to be published).Google Scholar
  42. 42.
    I. G. Salisbury and M. H. Loretto, Phil. Mag A 39(3), 317 (1979).CrossRefGoogle Scholar
  43. 43.
    E. Nes and J. Washburn, J. Appl. Phys. 42 (9), 3559 (1971).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • John C. Corelli
    • 1
    • 2
  • James W. Corbett
    • 1
    • 2
  1. 1.Department of Nuclear EngineeringRensselaer Polytechnic InstituteTroyUSA
  2. 2.Department of PhysicsState University of New York at AlbanyAlbanyUSA

Personalised recommendations