Skip to main content

On a Generalized Weyl-Von Neumann Converse Theorem

  • Chapter
  • 329 Accesses

Abstract

For two bounded selfadjoint operators A and A + B with the same essential spectra, there exists a unitary operator U such that B − (UAU* − A) is compact (Weyl-Von Neumann). More generally, an operator B in B(H) is compact iff σe (A + B) = σe (A) for all A ∈ B(H) (Gustafson-Weidmann), and in fact one needs only σ(A + B) ∩ σ (A) not empty for all A ∈ B(H) (Dyer, Porcelli, Rosenfeld). Aiken (Is. Math. J., 1976) and Zemanek (Studia Math., to appear) have studied the question of when for an arbitrary Banach algebra with identity the last condition guarantees that B is in some proper two-sided ideal. We give new results for this question, including a number of examples.

Partially supported by Mashad University.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Gustafson, Weyl’s Theorems, Proc. Oberwolfach Conf. on Linear Operators and Approximation, 1971, International Series of Numerical Mathematics, 20, Birkhauser-Verlag (1972), 80–93.

    Google Scholar 

  2. H. Weyl, Über beschränkte quadratische Formen, deren Differenz Vollsteting ist, Rend. cric. Math Palermo (1909)., 373–392.

    Google Scholar 

  3. J. Von Neumann, Charakterissierung des spektrums eienes integral operators, Actualites Sci. Indust. 229 (1935), 1–20.

    Google Scholar 

  4. K. Gustafson and J. Weidmann, On the essential spectrum, J. Math. Anal. Applic, 25 (1969), 121–127.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Zèmannek, Spectral characterization of two sided ideals in Banach algebras (to appear).

    Google Scholar 

  6. G. Aiken, Ph.D. dissertation, Louisiana State University, Baton Rouge, 1972.

    Google Scholar 

  7. G. Aiken, A problem of Dyer, Porcelli, and Rosenfeld, Israel J. Math., vol. 25, Nos. 3–4 (1976), 191–197.

    Article  MathSciNet  Google Scholar 

  8. J. Dyer, P. Porcelli, and M. Rosenfeld, Spectral characterization of two sided ideals in B(H), Israel J. Math. 10 (1971), 26–31.

    Article  MathSciNet  MATH  Google Scholar 

  9. C.E. Rickart, General Theory of Banach Algebras, D. Von Nostrand, Princeton (1960).

    MATH  Google Scholar 

  10. E.F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, Heidelberg 1973.

    MATH  Google Scholar 

  11. M. Naimark, Normed Rings, Nordhoff, Groningen, Netherlands (1959).

    MATH  Google Scholar 

  12. M. Rosenbloom, On the operator equation BX − XA = Q, Duke Math. J. 23, (1956), 263–270.

    Article  MathSciNet  Google Scholar 

  13. M. Seddighin, Ph.D. dissertation, University of Colorado at Boulder, to appear.

    Google Scholar 

  14. K. Gustafson, R.D. Goodrich, B. Misra, Irreversibility and Stochasticity of Chemical Processes, these proceedings.

    Google Scholar 

  15. I. Segal, The group ring of a locally compact group I, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 348–352.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Seddighin, M., Gustafson, K. (1981). On a Generalized Weyl-Von Neumann Converse Theorem. In: Gustafson, K.E., Reinhardt, W.P. (eds) Quantum Mechanics in Mathematics, Chemistry, and Physics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3258-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3258-9_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3260-2

  • Online ISBN: 978-1-4613-3258-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics