Skip to main content

Classical-Quantum Correspondence in Non-Linear Systems

  • Chapter
  • 333 Accesses

Abstract

Quantum mechanical autocorrelation functions are surprisingly accurate using classical dynamics with quantum initial conditions, for parameters appropriate to molecular vibration. The accuracy generally decreases with increasing time; thus the classically determined Fourier transform power spectra (molecular absorption spectrum) are most accurate at low and intermediate spectral resolution, by the time-frequency uncertainty relation. Spectral band widths and other absorption features are given a simple classical interpretation and easily calculated by running a modest number of classical trajectories.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Herzberg, Molecular Structure and Molecular Spectra II. Infrared and Raman Spectra of Polyatomic Molecules, (Van Nostrand, New York, 1945 ); III. Electronic Spectra and Electronic Structure of Polyatomic Molecules. ( Van Nostrand, New York, 1966 ).

    Google Scholar 

  2. R. G. Gordon, “Correlation Function for Molecular Motion”, Adv. Mag. Res. 3: 1 (1968).

    Google Scholar 

  3. D. W. Oxtoby, Adv. Chem. Phys. 40: 1 (1979).

    Article  Google Scholar 

  4. See, e.g. A. Messiah, Quantum Mechanics Vol. I ( Wiley, New York, 1958 ) p. 216.

    Google Scholar 

  5. See, e.g. J. E. Moyal, Proc. Cambridge Philos. Soc. 45:99 (1949); K. Imre, E. Ozizmir, M. Rosenbaum, and P. F. Zweifel, J. Math. Phys. 8: 1097 (1967).

    Google Scholar 

  6. E. J. Heller, J. Chem. Phys., 68: 2066 (1978).

    Article  Google Scholar 

  7. E. J. Heller, J. Chem. Phys. 68:3891 (1978); K. C. Kulander and E. J. Heller, J, Chem. Phys. 69: 2439 (1978).

    Article  Google Scholar 

  8. W. J. Cunningham, Introduction to Non-Linear Analysis (McGraw-Hill, New York, 1958 ). Chaps. 9, 1Q.

    Google Scholar 

  9. a) E. J. Heller, E. B. Stechel, and M. J. Davis, “Molecular Spectra, Fermi Resonances, and Classical Motion”, J. Chem. Phys., to be published; b) M. J. Davis, E. B. Stechel, and E. J. Heller, “Quantum Dynamics in Integrable and Non-integrable Regions” Chem. Phys. Lett., to be published; c) M. J. Davis and E. J. Heller, “Molecular Overtone Bandwidths from Classical Trajectories”, J. Phys. Chem., to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Heller, E.J., Stechel, E.B., Davis, M.J. (1981). Classical-Quantum Correspondence in Non-Linear Systems. In: Gustafson, K.E., Reinhardt, W.P. (eds) Quantum Mechanics in Mathematics, Chemistry, and Physics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3258-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3258-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3260-2

  • Online ISBN: 978-1-4613-3258-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics