A Modal Interpretation of Quantum Mechanics

  • Bas C. van Fraassen


Why is quantum logic not classical? In what sense is quantum theory indeterministic? How are mixed states related to pure states? What happens to measurement?


Quantum Mechanic Quantum Theory Dynamical State Mixed State Pure State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Bohr, Can quantum-mechanical description of physical reality be considered complete? Physical Review 48 (1935), pp. 696–702.ADSMATHCrossRefGoogle Scholar
  2. 2.
    H. Everett, Relative state formulation of quantum mechanics. Reviews of Modern Physics 29 (1957), pp. 454–462.MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    U. Fano, Description of states in quantum mechanics by density matrix and operator techniques. Reviews of Modern Physics 29 (1957), pp. 74–93.MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    P. Feyerabend, Reichenbach’s interpretation of quantum mechanics. Philosophical Studies 9 (1958), pp. 49–59.CrossRefGoogle Scholar
  5. 5.
    W. Furry, Some aspects of the quantum theory of measurement, in “Lectures in Theoretical Physics, VIII A”, Boulder, University of Colorado Press (1966).Google Scholar
  6. 6.
    A.M. Gleason, Measures on closed subspaces of a Hilbert space. Journal of Mathematics and Mechanics 6 (1957), pp. 885–893.MathSciNetMATHGoogle Scholar
  7. 7.
    S. Gudder, Hidden variables in quantum mechanics reconsidered. Review of Modern Physics 40 (1968), pp. 229–231.ADSCrossRefGoogle Scholar
  8. 8.
    G. Hardegree, Reichenbach and the interpretation of quantum mechanics, in “Hans Reichenbach: Logical Empiricist”, W.C. Salmon ed., Reidel, Dordrecht (1979).Google Scholar
  9. 9.
    C.A. Hooker, The nature of quantum mechanical reality: Einstein versus Bohr, in “Paradigms and Paradoxes”, R. Colodny ed.. University of Pittsburgh Press, Pittsburgh (1972).Google Scholar
  10. 10.
    J. Jauch, “Foundations of Quantum Theory”, Addison-Wesley, New York (1968).Google Scholar
  11. 11.
    S. Kochen, “The Interpretation of Quantum Mechanics” (unpublished). Dept. of Mathematics, Princeton University (1979).Google Scholar
  12. 12.
    S. Kochen and E. Specker, The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics 17 (1967), pp. 59–87.MathSciNetMATHGoogle Scholar
  13. 13.
    H.P. Krips, Two paradoxes in quantum theory. Philosophy of Science 36 (1969), pp. 145 - 152.MathSciNetCrossRefGoogle Scholar
  14. 14.
    E. Schrodinger, Probability relations between separated systems, Proc. Cambridge Philosophical Society 32 (1936), pp. 446–452.ADSCrossRefGoogle Scholar
  15. 15.
    B.C. van Fraassen, The Einstein-Podolski-Rosen Paradox, Synthèse 29 (1974), pp. 291–309.CrossRefGoogle Scholar
  16. 16.
    B.C. van Fraassen, A formal approach to the philosophy of science, in “Paradigms and Paradoxes: The Philosophical Challenge of the Quantum Domain”, R. Colodny ed.. University of Pittsburgh Press, Pittsburgh (1972), pp. 303 - 306.Google Scholar
  17. 17.
    B.C. van Fraassen, The labyrinth of quantum logics, “The Logico-Algebraic Approach to Quantum Theory”, C.A. Hooker ed., Reidel, Dordrecht, (1975).Google Scholar
  18. 18.
    B.C. van Fraassen, “The Scientific Image”, Oxford University Press, Oxford (1980).Google Scholar
  19. 19.
    B.C. van Fraassen, Semantic analysis of quantum logic, in “Contemporary Research in the Foundations and Philosophy of Quantum Theory”, C.A. Hooker ed., Reidel, Dordrecht (1973), pp. 80–113.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Bas C. van Fraassen
    • 1
    • 2
  1. 1.University of TorontoCanada
  2. 2.University of Southern CaliforniaUSA

Personalised recommendations