Skip to main content

Mechanism of Octahedral Substitutions on Transition Metal Complexes. Attempts to Distinguish Between D and Id Mechanisms

  • Chapter

Abstract

The evidence obtained from studying the induced aquations of Co(NH3)5N3 2+ and of Co(NH3)5(O2CNH2)2+ by nitrous acid, and of Co(NH3)5(halide)2+ by Hg2+, led to the conclusion that a common five-coordinate intermediate, Co(NH3)5 3+, was formed in all these reactions. Recent examinations of different reactions, including KMnO4 induced aquation of Co(NH3)5(DMSO)3+, however, suggest different intermediates in different reactions. The mechanism of several octahedral replacement reactions, studied in our laboratory, is discussed. These reactions are: aquations of trans-chloronitro- and trans-dichlorobisethylene- diaminecobalt(III) ions, and of (dimethyl suphoxide) pentaammi- necobalt(III) ions, in mixed aqueous-organic solvents; base-hydrolysis of Co(NH3)5(DMSO)3+; anations of Fe(CN)5(H2O)3- ion; replacements in FeII(CN)5(ligand)n- ions; replacements in the binuclear dimer of Fe(CN)5(H2O)3-. It was shown that often there is no sharp distinction between D and Id mechanism. The clear-cut D mechanism is much less frequent than it was originally thought to be the case. In the reaction systems mentioned the kinetic results are more consistent with Id than with D mechanism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Symbolism employed by C. H. Langford and H. B. Gray, “Ligand Substitution Processes” W. A. Benjamin, Inc., New York (1965).

    Google Scholar 

  2. A. Haim and H. Taube, Inorg. Chem. 2: 1199 (1963).

    Article  CAS  Google Scholar 

  3. D. A. Buckingham, I. I. Olsen, A. M. Sargeson, and H. Satrapa, Inorg. Chem. 6: 1027 (1967).

    Article  CAS  Google Scholar 

  4. A. M. Sargeson, Pure Appl. Chem. 33: 527 (1973).

    Article  CAS  Google Scholar 

  5. W. G. Jackson and A. M. Sargeson, Inorg. Chem. 15: 1986 (1976).

    Article  CAS  Google Scholar 

  6. C. H. Langford and W. R. Muir, J. Am. Chem. Soc. 89:3141 (1967); J. W. Moore and R. G. Pearson, Inorg. Chem. 3: 1334 (1964).

    Article  CAS  Google Scholar 

  7. J. E. Byod and W. K. Wilmarth, Inorg. Chim. Acta Rev. 5: 7 (1971).

    Article  Google Scholar 

  8. A. Haim and W. K. Wilmarth, Inorg. Chem. 1:573 (1962); R. Grassi, A. Haim, and W. K. Wilmarth, ibid. 6: 237 (1967).

    Article  CAS  Google Scholar 

  9. D. R. Strans and J. Yandell, Inorg. Chem. 9: 751 (1970).

    Article  Google Scholar 

  10. A. M. Sargeson, Pure Appl. Chem. 33:527 (1973); C. K. Poon, Coord. Chem. Rev. 10: 1 (1973).

    Article  CAS  Google Scholar 

  11. F. A. Posey and H. Taube, J. Am. Chem. Soc. 79: 255 (1957).

    Article  CAS  Google Scholar 

  12. W. L. Reynolds, S. Hafezi, A. Kessler, and S. Holly, Inorg. Chem. 18: 2860 (1979).

    Article  CAS  Google Scholar 

  13. W. L. Reynolds and E. R. Alton, Inorg. Chem. 17: 3355 (1978).

    Article  CAS  Google Scholar 

  14. D. A. Buckingham, I. I. Olsen, and A. M. Sargeson, J. Am. Chem. Soc. 88:5443 (1966); 89:5129 (1967); 90:6539, 6654 (1968), and refs. therein.

    Article  CAS  Google Scholar 

  15. D. A. Buckingham, I. I. Creaser, and A. M. Sargeson, Inorg. Chem. 9: 655 (1970).

    Article  CAS  Google Scholar 

  16. M. Birus, W. L. Reynolds, M. Pribanic, and S. Asperger, Croat. Chem. Acta, 47: 561 (1975).

    CAS  Google Scholar 

  17. W. L. Reynolds and S. Hafezi, Inorg. Chem. 17: 1819 (1978).

    Article  CAS  Google Scholar 

  18. F. Basolo and R. G. Pearson, “Mechanism of Inorganic Reactions”, Wiley, New York, p. 239 (1967).

    Google Scholar 

  19. M. Pribanic, M. Birus, D. Pavlovic, and S. Asperger, J.C.S. Dalton, 2518 (1973).

    Google Scholar 

  20. T. P. Jones, W. E. Harris, and W. J. Walace, Can. J. Chem. 39: 2371 (1951).

    Article  Google Scholar 

  21. W. L. Reynolds, M. Birus, and S. Asperger, J.C.S. Dalton, 761 (1974); W. L. Reynolds, S. Asperger, and M. Birus, J.C.S. Chem. Comm. 823 (1973).

    Google Scholar 

  22. D. Pavlovic, I. Murati, and S. Asperger, J.C.S. Dalton, 602 (1973).

    Google Scholar 

  23. H. E. Toma and J. M. Malin, Inorg. Chem. 12: 2080 (1973).

    Article  CAS  Google Scholar 

  24. H. E. Toma, J. M. Malin, and E. Giesbrecht, Inorg. Chem. 12: 2084 (1973).

    Article  CAS  Google Scholar 

  25. Z. Bradic, D. Pavlovic, I. Murati, and S. Asperger, J.C.S. Dalton, 344 (1974).

    Google Scholar 

  26. Z. Bradic, M. Pribanic, and S. Asperger, J.C.S. Dalton, 353 (1975).

    Google Scholar 

  27. D. Pavlovic, D. Sutic, and S. Asperger, J.C.S. Dalton, 2406 (1976).

    Google Scholar 

  28. I. Murati, D. Pavlovic, D. Sutra, and S. Asperger, J.C.S. Dalton, 500 (1978).

    Google Scholar 

  29. M. A. Blesa, J. A. Olabe, and P. J. Aymonino, J.C.S. Dalton, 1196 (1976).

    Google Scholar 

  30. A. D. James and R. S. Murray, J.C.S. Dalton, 326 (1977).

    Google Scholar 

  31. D. N. Hague, “Fast Reactions”, Wiley-Interscience, p. 12–14, New York (1971).

    Google Scholar 

  32. V. Gutmann, G. Gritzer, and K. Danksagmiiller, Inorg. Chim. Acta, 17: 81 (1976).

    Article  CAS  Google Scholar 

  33. G. Emschwiller and C. K. Jorgensen, Chem. Phys. Letters, 5: 561 (1970).

    Article  CAS  Google Scholar 

  34. R. Juretic, D. Pavlovic, and S. Asperger, J.C.S. Dalton, 2029 (1979).

    Google Scholar 

  35. M. L. Tobe, “Inorganic Reaction Mechanism”, p. 93, Nelson, London (1972).

    Google Scholar 

  36. C. H. Langford, Inorg. Chem. 18: 3288 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Ašperger, S. (1981). Mechanism of Octahedral Substitutions on Transition Metal Complexes. Attempts to Distinguish Between D and Id Mechanisms. In: Bertini, I., Lunazzi, L., Dei, A. (eds) Advances in Solution Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3225-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3225-1_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3227-5

  • Online ISBN: 978-1-4613-3225-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics