Microstructure and Bonding Mechanism in Explosive Welding

  • Michael Hammerschmidt
  • Heinrich Kreye


The use of transmission electron microscopy (TEM) to examine the microstructure of the bonding zone in explosive welding is described. Plates of an aluminum copper alloy were heat-treated to produce a well defined microstructure. With such plates a series of claddings with different parameters and conditions were made. The microstructure of the bonding zone was then analysed. From the changes of microstructure within the bonding zone as compared to the microstructure of the material in the original state conclusions are drawn concerning the deformation process and the thermally activated reactions which take place during welding. The findings lead to a more comprehensive understanding of the explosive bonding process, including maximum temperature within the bonding zone, cooling rate, and deformation mechanism during the impact of the plates. It can be shown that bonding is achieved by short time melting followed by extremely rapid solidification and cooling of a very thin layer along the contact interface. A brief discussion on the generalization of the results to include materials with high melting temperature, and the correlation between the microstructure and properties of explosive welds is presented.


Bonding Mechanism Explosive Welding Collision Direction Flyer Plate Bonding Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dieter, G.E., “Response of Metals to High Velocity Deformation”, Shewmon, P.G., Zackay, V.F. (eds.), Interscience Publishers, New York, London, p. 409, (1961).Google Scholar
  2. 2.
    Leslie, W.C., Hornbogen, E., Dieter, G.E., J. Iron Steel Inst., 200, 622 (1962).Google Scholar
  3. 3.
    van Wely, F.E., Verbraak, C.A., Proc. “High Energy Rate Working of Metals”, Oslo, p. 172, (1964).Google Scholar
  4. 4.
    Hornbogen, E., ibid. p. 345.Google Scholar
  5. 5.
    Smith, C.S., Trans. AIME, 212, 577 (1958).Google Scholar
  6. 6.
    Hornbogen, E., Acta Met., 10, 978 (1962).CrossRefGoogle Scholar
  7. 7.
    Meyers, M.A., Scripta Met., 12, 21 (1978).CrossRefGoogle Scholar
  8. 8.
    Nolder, R.L., Acta Met., 12, 227 (1964).CrossRefGoogle Scholar
  9. 9.
    Trueb, L.F., J. Appl. Phys., 40, 2976 (1969).CrossRefGoogle Scholar
  10. 10.
    Higgins, G.T., Met. Trans., 2, 1277 (1971).Google Scholar
  11. 11.
    Murdie, D.C., Blankenburgs, G., J. Inst. Metals, 94, 119 (1966).Google Scholar
  12. 12.
    Trueb, L.F., Trans. AIME, 242, 1057 (1968).Google Scholar
  13. 13.
    Yamashita, T., Onzawa, T., Ishii, Y., Trans. J.W.S., 4, 51 (1973).Google Scholar
  14. 14.
    Kreye, H., Wittkamp, I., Richter, U., Z. Metallkde., 67, 141 (1976).Google Scholar
  15. 15.
    Dor-Ram, J., Weiss, B.Z., Komem, Y., Met. Trans., 8A, 518 (1977).CrossRefGoogle Scholar
  16. 16.
    Dor-Ram, J., Weiss, B.Z., Komem, Y., Acta Met., 27, 1417 (1979).CrossRefGoogle Scholar
  17. 17.
    Lucas, W., J. Inst. Metals, 99, 334 (1971).Google Scholar
  18. 18.
    Oxford, C.H., Flewitt. P.E.J., Met. Trans., 8A, 741 (1977).Google Scholar
  19. 19.
    Hornbogen, E., Aluminium, 43, 41 (1967).Google Scholar
  20. 20.
    Prümmer, R., Explosivstoffe, 60, 137 (1972).Google Scholar
  21. 21.
    Hammerschmidt, M., Richter, U., Proc. “Explosive Working of Metals”, Gottwaldov, CSSR, p. 104 (1979).Google Scholar
  22. 22.
    Hammerschmidt, M., Kreye, H., unpublished results.Google Scholar
  23. 23.
    Furrer, P., Ph. D. thesis, Techn. Univ. Stuttgart (1972).Google Scholar
  24. 24.
    Deribas, A.A., “Fizika Uprocnenija i Svarki Vzryvom”, Nauka Novosibirsk (1972).Google Scholar
  25. 25.
    Gordopulov, Y.A., Dremin, A.N., Mikhailov, A.N., Fizika Goreniya i Vzryva, 14, 76 (1978).Google Scholar
  26. 26.
    Kreye, H., Hammerschmidt, M., Proc. “High Energy Rate Fabrication”, Essen, p. 2. 11. 1, (1977).Google Scholar
  27. 27.
    Cline, C.F., Hopper, R.W., Scripta Met., 11, 1137 (1977).CrossRefGoogle Scholar
  28. 28.
    Hammerschmidt, M., Kreye, H., Meinck, B., Metall, 34, 23 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Michael Hammerschmidt
    • 1
  • Heinrich Kreye
    • 1
  1. 1.Institut für WerkstofftechnikHochschule der BundeswehrHamburg 70Germany

Personalised recommendations