Advertisement

Thermomechanical Processing by Shock Waves: An Overview

  • Marc A. Meyers
  • Raimo N. Orava

Abstract

Research efforts assessing the potential of shock TMP for a number of alloy systems are reviewed. Shock loading seems to be a promising deformation technique in TMP when (a) the initial strength of the alloy is such that conventional deformation is precluded and (b) when the shock wave induces property improvements that are significantly superior to those of conventional deformation.

Keywords

Shock Loading Trip Steel THERMOMECHANICAL Processing Room Temperature Tensile Property Cellular Precipitate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Henning, H.J., “Applications and Potential of Thermomechanical Treatment”, Battelle Memorial Institute, DMIC Memo No. 251, Nov. (1970).Google Scholar
  2. 2.
    Zackay, V.F., Mat. Sci. and Eng., 25, 247 (1976).CrossRefGoogle Scholar
  3. 3.
    Delaey, L., Zeitschrift Metallk. 63, 531 (1972).Google Scholar
  4. 4.
    Silverman, S.M., Godfrey, L., Hauser, H.A., and Seward, E.T. “Effect of Shock-Induced High Dynamic Pressures on Iron-Base Alloys”, Pratt and Whitney Aircraft, East Hartford, CT. Aeronautical Systems Division, W-PAFB, Report No, ASD-TDR-62- 442, August, 1962. AD 287 473.Google Scholar
  5. 5.
    Stein, B.A. and Johnson, P.C., Trans. AIME, 227, 1188 (1963).Google Scholar
  6. 6.
    Koepke, B.C., Jewett, J.P., and Chandler, W.T., “Strengthening Iron-Base Alloys by Shock Waves”, Rocketdyne, North American Aviation, Inc., Canoga Park, Calif. Air Force Materials Laboratory, W-PAFB, Report No. ML TDR 64-282, October, 1964.Google Scholar
  7. 7.
    Doherty, A.E., Mykkanen, J., and Henriksen, E.K., “Dynamic Pressure Hardening of Irregular Shapes”, Aerojet-General Co., Air Force Materials Laboratory, Wright-Patterson Air Force Base, No. AFML-TR-66-127, July, 1966. AD 489 402.Google Scholar
  8. 8.
    Mykkanen, J.P., Doherty, A.E., and Henriksen, E.K., “A New Method for Strengthening of Metals with Applications to Production-Type Parts”, Proc. 2nd International Conf, of the Center for High Energy Rate Forming,” ed. A.A. Ezra, U. of Denver, p. 2.3.1 (1969).Google Scholar
  9. 9.
    Orava, R.N., Chap. XII, Center for High Energy Forming, Army Materials and Mechanics Research Center, Final Report, AMMRC CR 66-05/51 (F).Google Scholar
  10. 10.
    Wittman, R.H., “The Use of Shock Waves to Strengthen S7 Steel Alloy Swaging Mandrels”, Denver Research Institute, Denver, Colorado. U.S. Naval Ordinance Station, Louisville, KY, Final Report, Contract No. N00197-73-C-0444 (J), June 30, 1974,Google Scholar
  11. 11.
    Dunleavy, J.C. and Spretnak, J.W., “Soviet Technology on Thermal-Mechanical Treatment of Metals”, DMIC Memo. 244 Battelle Memorial Institute, Columbus, Ohio, Nov., 1969, Contract No, F33615-69-C-l343.Google Scholar
  12. 12.
    Kutsar, A.R., Utevsky, L.M., and Pershin, S.V., Phys. Met. Metallogr., 40, 130 (1975).Google Scholar
  13. 13.
    Berezhnoi, V.V., Gelunova, Z.M., Kagan, E.S., Kovalenko, V.A., and Yaroshenko, A.P., Tr. Volgogr. Politekn. Inst., 7, 244 (1975).Google Scholar
  14. 14.
    Kutsar, A.R. and Utevsky, L.M., Fizika Metallov Metallovedenie, 40, 153 (1975).Google Scholar
  15. 15.
    Smirnov, M.A., Shteinberg, M.M., Atroshchenko, E.S., Sedykh, V.S., and Morozov, O.P., Met. Sci. Heat Treat., 15, 49 (1973).CrossRefGoogle Scholar
  16. 16.
    Strok, L.P., Vlasov, V.I., and Krasikov, K.I., Trudy Vses, N-I Inst. Zheliz. Dorog. Transp., 464, 118 (1972).Google Scholar
  17. 17.
    Vlasev, I.S., Golovchiner, Ya. M., and Pashkov, P.O., Tr. Volgog. Politekh. Inst., 7, 235 (1975).Google Scholar
  18. 18.
    Orava, R.N., “The Aging Response of Shock-Deformed Nickel-Base Superalloys”, Denver Research Institute, University of Denver, U.S. Naval Air Systems Command, Final Report No. DRI 2592, January, 1972, AD 737 310.Google Scholar
  19. 19.
    Orava, R.N., Mater. Sci. Eng., 11, 177 (1973).CrossRefGoogle Scholar
  20. 20.
    Orava, R.N., “Thermomechanical Processing of Nickel-Base Superailoys by Shock-Wave Deformation”, Denver Research Institute, University of Denver. U.S. Naval Air Systems Command, Final Report No. DRI 2618, March, 1973. AD 761 218.Google Scholar
  21. 21.
    Orava, R.N., “Response of Nickel-Base Superalloys to Thermomechanical Processing by Shock-Wave Deformation”, Denver Research Institute, University of Denver. U.S. Naval Air Systems Command, Final Report No. DRI 2638, April, 1974.Google Scholar
  22. 22.
    Meyers, M.A., “Thermomechanical Processing of a Nickel-Base Superalloy by Cold Rolling and Shock-Wave Deformation”, Ph.D. Dissertation, University of Denver, Colorado, May, 1974.Google Scholar
  23. 23.
    Meyers, M.A., and Orava, R.N., Met, Trans., 7A, 179 (1976).CrossRefGoogle Scholar
  24. 24.
    Orava, R.N., and Wittman, R.H., in “Advances in Deformation Processing”, eds., Burke, J.J. and Weiss, V., p. 485, Plenum Press, New York, 1978.Google Scholar
  25. 25.
    Orava, R.N., “Thermomechanical Processing of Unitemp AF2-1DA Nickel-Base Superalloy by Shock-Wave Deformation”, Denver Research Institute, University of Denver. U.S. Naval Air Systems Command, First Quarterly Progress Letter, June, 1974,Google Scholar
  26. 26.
    Antrobus, D.J., and Reid, C.N., “Precipitation Hardening of Shock-Loaded Aluminum Alloys”, University of Birmingham, England. Ministry of Defense, Final Report, Agreement No. PD/27/056/ADM, March, 1972.Google Scholar
  27. 27.
    Conserva, M., Buratti, M., de Russo, E., and Gatto, F., Mater. Sci. Eng., 11, 103 (1973).CrossRefGoogle Scholar
  28. 28.
    Jacobs, A.J., “The Mechanism of Stress Corrosion Cracking in 7075 Aluminum”, Proc. Conf. on Fundamental Aspects of Stress Corrosion Cracking, ed. Staehle, R.W., et al., NACE, Houston, 530 (1969).Google Scholar
  29. 29.
    Wittman, R.H., in “Metallurgical Effects at High Strain Rates”, eds., Rohde, R.W., Butcher, B.M., Holland, J.R., and Karnes, C.H., p. 669, Plenum Press, New York, 1973.Google Scholar
  30. 30.
    Stein, C., Scripta Met., 9, 67 (1975).CrossRefGoogle Scholar
  31. 31.
    Greenhut, V.A., Chen, M.G., Banks, R., and Golaski, S., “Long-Range Diffusion of Vacancies and Substitutional Atoms During High Strain-Rate Deformation of Aluminum Alloys”, Proc. ICM II, Boston, MA, August, 1975.Google Scholar
  32. 32.
    Nordstrom, T.V., Rohde, R.W., and Mottern, D.J., Met. Trans., 6A, 1561 (1975).CrossRefGoogle Scholar
  33. 33.
    de Carvalho, M.B., “Explosive Thermomechanical Processing of Beta III Titanium Alloy”, M.Sc. Dissertation, U. of Denver, Colorado, 1973.Google Scholar
  34. 34.
    Kalish, D., and Rack, H.J., Met. Trans., 3, 1885 (1973).CrossRefGoogle Scholar
  35. 35.
    Fountain, C., Naval Weapons Center, China Lake, CA, private communication.Google Scholar
  36. 36.
    Oblak, J.M., and Owczarski, W.A., Met. Trans., 3, 617 (1972).CrossRefGoogle Scholar
  37. 37.
    McElroy, R.J., and Szkopiak, F.C., Intl. Met. Reviews, 17, 174 (1972).Google Scholar
  38. 38.
    Schmatz, D.J., Metals Eng. Quart., 20, May (1966).Google Scholar
  39. 39.
    Zackay, V.F., J. Iron Steel Inst., 894, June (1969).Google Scholar
  40. 40.
    Meyers, M.A., Met. Trans., 8A, 1581 (1977).CrossRefGoogle Scholar
  41. 41.
    Orava, R.N., Stone, G.A., Pelton, A.R., and Meyers, M.A., South Dakota School of Mines and Technoloqy, unpublished results (1978).Google Scholar
  42. 42.
    Willan, W.C., South Dakota School of Mines and Technology, M.Sc. Dissertation, 1978.Google Scholar
  43. 43.
    Wittman, R.H., Denver Research Institute, U. of Denver, unpublished results (1975).Google Scholar
  44. 44.
    Oblak, J.M. and Owczarsky, W.A., Trans. TMS-AIME, 242, 1563 (1968).Google Scholar
  45. 45.
    Rack, H., Soripta Met., 12, 1007 (1978).CrossRefGoogle Scholar
  46. 46.
    Robertson, J.M., Simon, J.W., and Tillman, T.D., “Shock Wave Thermomechanical Processing of Aircraft Gas Turbine Disk Alloys”, Pratt & Whitney Airc. Group, U.S. Naval Air Systems Command, Final Technical Report, August, 1979, Contract No. N00019-78-C-0270.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Marc A. Meyers
    • 1
    • 2
  • Raimo N. Orava
    • 1
    • 2
  1. 1.New Mexico Institute of Mining and TechnologySocorroUSA
  2. 2.South Dakota School of Mines and TechnologyRapid CityUSA

Personalised recommendations