Application of Survival Statistics to the Impulsive Fragmentation of Ductile Rings

  • D. E. Grady


An analysis of fragmentation due to impulsive stress loading of solid materials is developed which results in analytic expressions for distributions in fragment sizes. The analysis is restricted to a linear (one-dimensional) distribution of material which is loaded uniformly in tension until fracture, and ultimately fragmentation, occurs. Concepts of survival statistics consistent with simple physical laws governing the fracture process are used to account for the spatial and temporal distribution in fracture nucleation sites. Analytic fragment distribution curves for ductile fracture are derived and found to provide a good representation of data obtained from impulsive fragmentation studies on aluminum rings.


Ductile Fracture Statistical Concept Release Wave Dynamic Fragmentation Fragment Size Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mott, N. F., Proc. Royal Soc. London, 300, 300 (1947).Google Scholar
  2. 2.
    Taylor, G. I., “Scientific Papers of G. I. Taylor”, Vol. III, No. 44, Cambridge University Press, p. 387, 1963.Google Scholar
  3. 3.
    Hoggatt, C. R., and Recht, R. F., J. Appl. Phys., 39, 1856 (1968).CrossRefGoogle Scholar
  4. 4.
    Hehker, L. J., and Pasman, H. J., Proc. 2nd Int. Symp. Ballistics, Daytona Beach, Florida, p. 1, 1976.Google Scholar
  5. 5.
    Wesenberg, D. L., and Sagartz, M. J., J. Appl. Mech., 44, 643 (1977).CrossRefGoogle Scholar
  6. 6.
    Erlich, D. C., Seaman, L., Shockey, D. A., and Curran, D. R., Stanford Research Institute Final Rept. DAAD05-76-C-0762, M May, 1977.Google Scholar
  7. 7.
    Johnson, W. A. and Mehl, R. F., Trans. Amer. Inst. Min. Met. Eng. 135, 416 (1939).Google Scholar
  8. 8.
    Avrami, M., J. Chem. Phys. 3 7, 1103 (1939).CrossRefGoogle Scholar
  9. 9.
    Lee, E. H., “Energetics in Metallurgical Phenomena III”, W. M. Mueller ed., Gordon and Breach, p. 85, 1967.Google Scholar
  10. 10.
    Curran, D. R., Seaman, L., and Shockey, D. A., Phys. Today, 30, 1, 46 (1977).CrossRefGoogle Scholar
  11. 11.
    Dienes, J. K., “Proc. 19th U. S. Symp. on Rock Mech.”, Stateline, Nevada, p. 51, 1978.Google Scholar
  12. 12.
    Grady, D. E. and Kipp, M. E., Int. J. Rock Mech. Min. Sci., 17 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • D. E. Grady
    • 1
  1. 1.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations