Effects of Dietary Carbohydrate and Lipid on Nutrition and Metabolism of Metazoan Parasites with Special Reference to Parasitic Hymenoptera

  • S. N. Thompson

Abstract

Comprehensive investigation on the nutrition and biochemistry of parasitic metozoans is largely restricted to a few species. Severe limitations are therefore placed on the conclusive assessment of their nutritional and biochemical nature as characteristic of a parasitic way of life. Furthermore, in those species studied, the possible adaptive significance of their nutrition and metabolism to parasitism has been elusive due to the difficulty in establishing a relationship to probable reproductive fitness as well as a lack of comparative knowledge concerning related free-living forms. Our present knowledge, nevertheless, indicates that parasitic animals have evolved a variety of life strategies and become physiologically and biochemically adapted to their hosts in novel ways. Lipid and carbohydrate nutrients play unusual and important roles in parasites as nutrients essential for growth and development and as factors affecting the success of the parasite-host relationship.

Keywords

Sucrose Fermentation Starch Lipase Succinate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfin-Slater, R. B. and Aftergood, L. 1971, Physiological functions of essential fatty acids. Progr. Biochem Pharmacol. 6: 214–244.Google Scholar
  2. Barlow, J. S. 1972, Some host-parasite relationships in fatty acid metabolism, in: “Insect and Hi t e Nutrition,” J. G. Rodriguez, ed., North Holland, Amsterdam. 14Google Scholar
  3. Barlow, J. S. Bracken, G. K. 1971, Incorporation of Na-l- Cacetate into the fatty acids of two insect parasities (Hymenoptera) reared on different hosts, Can. J. Zool. 49:1297– 1300.Google Scholar
  4. Barrett, J., Ward, C. W., Fairbairn, D. 1970, The glyoxylate cycle and the conversion of triglycerides to carbohydrates in developing eggs of Ascaris lumbricoides, Comp. Biochem. Physiol. 35:577– 586.Google Scholar
  5. Bartlett, B. R. 1964, Patterns in the host-feeding habit of adult parasitic Hymenoptera, Ann. Entomol. Soc. Amer. 57:344– 350.Google Scholar
  6. Bracken, G. K. 1965, Effects of dietary components on fecundity of the parasitoid Exeristes comstockü (Cress.) (Hymenoptera: Ichneumonidae), Can. Ent. 97:1037– 1041.Google Scholar
  7. Bracken, G. K. Barlow, J. S. 1967, Fatty acid composition of Exeristes comstockü (Cress.) reared on different hosts, Can. J. Zool. 45:57– 61.Google Scholar
  8. Bruce, J., Ruff, M. D., Davidson, D. E., Crum, J. W. 1974, Shistosoma mansoni and Shistosoma japonicum: Comparison of selected aspects of carbohydrate metabolism, Comp. Biochem. Physiol. 49B:157– 164.Google Scholar
  9. Bueding, E. 1952, Carbohydrate metabolism, in: “Chemical Physiology of Endoparasitic Animals,” T. Von Brand, ed., Academic Press, New York.Google Scholar
  10. Buteau, G. H. and Fairbairn, D. 1969, Lipd metabolism in helminth parasites. VIII. Triglyceride synthesis in Hymenolepis diminuta (Cestoda), Expl Parasitol. 25:265– 275.Google Scholar
  11. Carro, C. 1963, Influence of dietary carbohydrate-fat combinations on various functions associated with glycolysis and lipogenesis in rats. Effects of substituting sucrose for rice starch with unsaturated and with saturated fat, J. Nutrition 79:93– 100.Google Scholar
  12. Carroll, C. 1964, Influence of dietary carbohydrate-fat combinations on various functions associated with glycolysis and lipogenesis in rats. Glucose vs. sucrose with corn oil as two hydrogenated oils, J. Nutrition 82:103– 172.Google Scholar
  13. Carroll, C., Bright, E. 1965, Influence of carbohydrate-to-fat ratio on metabolic changes induced in rats by feeding different carbohydrate- combinations. I. Nutrition 87:202– 210.Google Scholar
  14. Castro, G. A., Fairbairn, D. 1969, Carbohydrates and lipids in Trichinella spiralis larvae and their utilization in vitro, J. Parasitol. 55:51– 58.Google Scholar
  15. Castro, G. A., Roy, S. A. 1974, Disaccharides and the nutrition of Trichinella spiralis, l. Parasitol. 60:887– 889.Google Scholar
  16. Clegg, J. A., Smyth, J. D. 1968, Growth, development and culture methods: Parasitic Platyhelminths, in: “Chemical Zoology” M. Florkin B. T., Scherr, eds., Academic Press, New York.Google Scholar
  17. Craig, M. C., Nepokroeff, C. M., Lakshmanan, M. R., Porter, J. W. 1972, Effect of dietary change on the rates of synthesis and degradation of rat fatty acid synthetase, Arch. Biochem. Biophys. 152:619– 630.Google Scholar
  18. Crompton, D. W. T. 1977, Qualitative requirements and utilization of nutrients: Acanthocephala, in: “Handbook of Nutrition and Food,” Section D: Nutritional Requirements, Vol. I, M. Rechcigl, Jr., ed., Chemical Rubber Co., Cleveland.Google Scholar
  19. Crompton, D. W. T., Nesheim, M. C. 1973, Relationship between Moniliformis dubius ( Acanthocephala) and the carbohydrate intake of rats, Parasitology 67: 11Google Scholar
  20. Dadd, R. H. 1977, Qualitative requirements and utilization of nutrients: Insects, in: “Handbook of Nutrition and Food,” Section D: Nutritional requirements, Vol. I, M. Rechcigl, Jr., ed, Chemical Rubber Co., Cleveland.Google Scholar
  21. Dunagen, T. T. 1962, Studies on in vitro survival of Acanthocephala, Proc. Helminthol. Soc. Wash. 29:131– 135.Google Scholar
  22. Dunkley, L. C., Metterick, D. F. 1969, Hymenolepis diminuta: Effect of quality of host dietary carbohydrate on growth, Exp. Parasitol. 25:146– 161.Google Scholar
  23. Fairbairn, D. 1969, Lipid components and metabolism of Acanthocephala and Nematoda, in: "Chemical Zoology," M. Florkin and B. T. Scheer, eds.,Academic Press, New York.Google Scholar
  24. Fairbairn, D. 1970, Biochemical adaptation and loss of genetic capacity in helminth parasites, BioI. Rev. 45:29– 72.Google Scholar
  25. Ferguson, J. D., Castro, G. A. 19 Metabolism of intestinal stages of Trichinella spiralis, AIDer. l. Physiol. 225:85–89.Google Scholar
  26. Ginger, C. D. and Fairbairn, D. 1966, Lipid metabolism in helminth parasites. II. The major origins of the lipids of Hymenolepis diminuta (Cestoda), J. Parasitol. 52:1097– 1107.Google Scholar
  27. Graff, D. J. 1964, Metabolism of C14_glucose by Moniliformis dubius (Acanthocephala), 1. Parasitol. 50:230– 234.Google Scholar
  28. Greichus, A., Greichus, Y. A. 1975, Lipid metabolism in the hog roundworm, Int. J. Biochem. 6:1– 7.Google Scholar
  29. Hammond, R. A. 1968, Some observations on the role of the body wall of Acanthocephalus ranae in lipid uptake, J. Exp. Biol. 48:217– 225.Google Scholar
  30. Metterick, D. F., Jackson, D. J. 1977, Qualitative requirements and utilization of nutrients: Platyhelminthes, in: “HandbookGoogle Scholar
  31. of Nutrition and Food,” Section D: Nutritional Requirements, Vol. I, M. Rechcig1, Jr., ed., Chemical Rubber Co., Cleveland.Google Scholar
  32. Meyer, F., Meyer, H. 1972, Loss of fatty acid biosynthesis in flatworms, in: “Comparative Biochemistry of Parasites,” H.Google Scholar
  33. Van den Bossche, ed.,Academic Press, New York.Google Scholar
  34. Meyer, F., Kimura, S. Mueller, J. F. 1966, Lipid metabolism in the larval and adult forms of the tapeworm, SpirometraGoogle Scholar
  35. mansonoides, J. BioI Chern. 241:4224–4232.Google Scholar
  36. Meyer, F., Meyer, H., and Bueding, E. 1970, Lipid metabolism in the parasitic and free living flatworms, Schistosoma mansoniGoogle Scholar
  37. and Dugesia dorotocephala, Biochim. Biophys. Acta. 210: 257–266.Google Scholar
  38. Passey, R. F. and Fairbairn, D. 1957, The conversion of fat to carbohydrate during embryonation of Ascaris eggs, Can Biochem. Physiol. 35:511– 525.Google Scholar
  39. Rathbone, L. and Rees, K. R. 1954, Glycolysis in Ascaris lumbricoides from the pig, Biochim. Biophys. Acta. 15:126– 133.Google Scholar
  40. Read, C. P. 1959, The role of carbohydrates in the biology of cestodes. VIII. Some conclusions and hypotheses, Exp. Parasito1. 8:365– 382.Google Scholar
  41. Read, C. P. 1966, Nutrition of intestinal helminths, in: “The Biology of Parasites,” E. J. L. Soulsby, ed.,Academic Press,Google Scholar
  42. Read, C. P. 1968, Intermediary metabolism of flatworms, in: "Chemical Zoology," M. Florkin and B. T. Scheer, eds Academic Press, New York.Google Scholar
  43. Read, C. P., Rothman, A. H. 1957, The role of carbohydrates in the biology of cestodes. IV. Some effects of host dietary carbohydrates on growth and reproduction of Hymenolepis diminuta, Exp. Parasitol. 6:294– 305.Google Scholar
  44. Read,P., Chiller, E. L., Phifer, K. 1958, The role of carbohydrates in the biology of cestodes. V. Comparative studies on the effects of host dietary carbohydrate on Hymenolepis spp., Exp. Parasitol. 7:198– 216.Google Scholar
  45. Read, C. P. and Simmons, J. E. 1963, Biochemistry and physiology of tapeworms, Physio1. Rev. 43:263– 305.Google Scholar
  46. Rothstein, M. and Nicholas, G. L. 1969, Culture methods and nutrition of nematodes and acanthocephala, in: “Chemical Zoology,” M. Florkin and B. T. Scheer, eds Academic Press, New York.Google Scholar
  47. Romos, D. R. and Leveille, G. A. 1974, Effect of diet on activity of enzymes involved in fatty acid and cholesterol synthesis, Adv. Lip. Res. 12:97– 145.Google Scholar
  48. Saz, H. J. 1969, Carbohydrate and energy metabolism of nematodes and acanthocephala, in: “Chemical Zoology,” M. Florkin and B. T. Scheer, eds.,Academic Press, New York.Google Scholar
  49. Saz, H. J. 1972, Comparative biochemistry of carbohydrates in nematodes and cestodes, in: “Comparative Biochemistry of Parasites,” H. Van den Bossche, ed., Academic Press, New York.Google Scholar
  50. Silverman, P. H. 1965, In vitro cultivation procedures for parasitic helminths, Adv. Biochem. Physiol. 3:159– 222.Google Scholar
  51. Silverman, P. H., Hansen, E. L. 1971, In vitro cultivation procedures for parasitic helminths: Recent advances, Adv. Parasitol. 9:227– 258.Google Scholar
  52. Smith, T., Brooks, T., Lockard, V. 1970, In vitro studies on cholesterol metabolism in the blood fluke, Schistosoma mansoni, Lipids 5:854– 856.Google Scholar
  53. Thompson, s. N. 1975, Defined meridic and holidic diets and aseptic feeding procedures for artificially rearing the ectoparasitoid Exeristes roborator (Fabricius), Ann Entomol Soc Amer. 68:220– 226.Google Scholar
  54. Thompson, s. N. 1976a, Effects of dietary amino acid level and nutritional balance on larval survival and development of theGoogle Scholar
  55. parasite, Exeristes roborator, Ann. Entomol. Soc. Amer. 69: 835–838.Google Scholar
  56. Thompson, s. N. 1976b, Regulation of lipid metabolism in the insect parasite Exeristes roborator. (Fabricius) Parasitol. 62: 303–306.Google Scholar
  57. Thompson, S. N. 1977, Lipid nutrition during larval development of the parasitic wasp. Exeristes Insect Physiol. 23:579– 583.Google Scholar
  58. Thompson, S. N. 1977, Lipid nutrition during larval development of the parasitic wasp. Exeristes Insect Physiol. 23:579– 583.Google Scholar
  59. Thompson, S. N. 1980, Effects of dietary glucose on in vivo fatty acid metabolism and in vitro synthetase activity in the parasiteGoogle Scholar
  60. Thompson, S. N. 1980, Effects of dietary glucose on in vivo fatty acid metabolism and in vitro synthetase activity in the parasiteGoogle Scholar
  61. Thompson, S. N., Adams, J. D. 1976, Characterization of selected lipids of the parasite Exeristes roborator (Fabricius), Comp. Biochem. Physiol. 55B:59l– 593.Google Scholar
  62. Thompson, S. N., Barlow, J. S. 1972, Synthesis of fatty acids by the parasite Exeristes comstockii (hymenoptera) and two hosts, Galleria mellonella (Lep.) and Lucilia sericata (Dip.), Can. J. Zool. 50:1105– 1110.Google Scholar
  63. Thompson, S. N., Barlow, J. S. 1973, The inconsistent phospholipid fatty acid composition in an insect parasitoid, Itoplectis conquisitor, Comp. Biochem. Physiol. 44B:59– 64.Google Scholar
  64. Thompson, S. N., Barlow, J, 1974, The fatty acid composition of parasitic Hymenoptera and its possible biological significance, Ann Entomol Soc Amer. 67:627– 632.Google Scholar
  65. Thompson, S. J. and Jhonson, J. 1978, Further studies on lipid metabolism in the insect parasite Exeristes roborator (Fabricius). Parasitol. 64:731– 740.Google Scholar
  66. Van Handel, E. 1965, The obese mosquito, J. Physiol. 181:478– 486.Google Scholar
  67. Waldbauer, G. P. 1968, The consumption and utilization of food by insects, Adv. Insect Physiol. 5:229– 288.Google Scholar
  68. Ward, C. W. and Fairbairn, D. 1970a, Enzymes of Beta-oxidation and the tricarboxylic acid cycle in adult Hymenolepis diminuta (Cestoda) and Ascaris lumbricoides (Nematoda), J. Parasitol. 56:100– 1012.Google Scholar
  69. Ward, C. W., Fairbairn, D. 1970b, Enzymes of oxidation and their function during development of Ascaris lumbricoides eggs, Devl. BioI. 22:366– 387.Google Scholar
  70. Weinstein, P. P. 1966, The in vitro cultivation of helminths with reference to morphogenesis, in: “The Biology of Parasites,”Google Scholar
  71. E. L. J. Soulsby, ed., Academic Press, New York.Google Scholar
  72. Yazgan, S. 1972, A chemically defined synthetic diet and larval nutritional requirements of the endoparasitoid Itoplectis conquisitor (Hymenoptera), J Insect Physiol. 18:2123– 2142.Google Scholar
  73. Zakim, D. 1973, Influence of fructose on hepatic synthesis of lipids, Prog. Biochem. Pharmacol.8:l6l– l88.Google Scholar
  74. Barlow, J. S. 1972, Some host-parasite relationships in fatty acid metabolism, in: “Insect and Hi t e Nutrition,” J. G. Rodriguez, ed., North Holland, Amsterdam. 14Google Scholar
  75. Barlow, J. S. Bracken, G. K. 1971, Incorporation of Na-l- Cacetate into the fatty acids of two insect parasities (Hymenoptera) reared on different hosts, Can. J. Zool. 49:1297– 1300.Google Scholar
  76. Barrett, J., Ward, C. W., Fairbairn, D. 1970, The glyoxylate cycle and the conversion of triglycerides to carbohydrates in developing eggs of Ascaris lumbricoides, Comp. Biochem. Physiol. 35:577– 586.Google Scholar
  77. Bartlett, B. R. 1964, Patterns in the host-feeding habit of adult parasitic Hymenoptera, Ann. Entomol. Soc. Amer. 57:344– 350.Google Scholar
  78. Bracken, G. K. 1965, Effects of dietary components on fecundity of the parasitoid Exeristes comstockü (Cress.) (Hymenoptera: Ichneumonidae), Can. Ent. 97:1037– 1041.Google Scholar
  79. Bracken, G. K. Barlow, J. S. 1967, Fatty acid composition of Exeristes comstockü (Cress.) reared on different hosts, Can. J. Zool. 45:57– 61.Google Scholar
  80. Bruce, J., Ruff, M. D., Davidson, D. E., Crum, J. W. 1974, Shistosoma mansoni and Shistosoma japonicum: Comparison of selected aspects of carbohydrate metabolism, Comp. Biochem. Physiol. 49B:157– 164.Google Scholar
  81. Bueding, E. 1952, Carbohydrate metabolism, in: “Chemical Physiology of Endoparasitic Animals,” T. Von Brand, ed., Academic Press, New York.Google Scholar
  82. Buteau, G. H. and Fairbairn, D. 1969, Lipd metabolism in helminth parasites. VIII. Triglyceride synthesis in Hymenolepis diminuta (Cestoda), Expl Parasitol. 25:265– 275.Google Scholar
  83. Carro, C. 1963, Influence of dietary carbohydrate-fat combinations on various functions associated with glycolysis and lipogenesis in rats. Effects of substituting sucrose for rice starch with unsaturated and with saturated fat, J. Nutrition 79:93– 100.Google Scholar
  84. Carroll, C. 1964, Influence of dietary carbohydrate-fat combinations on various functions associated with glycolysis and lipogenesis in rats. Glucose vs. sucrose with corn oil as two hydrogenated oils, J. Nutrition 82:103– 172.Google Scholar
  85. Carroll, C., Bright, E. 1965, Influence of carbohydrate-to-fat ratio on metabolic changes induced in rats by feeding different carbohydrate- combinations. I. Nutrition 87:202– 210.Google Scholar
  86. Castro, G. A., Fairbairn, D. 1969, Carbohydrates and lipids in Trichinella spiralis larvae and their utilization in vitro, J. Parasitol. 55:51– 58.Google Scholar
  87. Castro, G. A., Roy, S. A. 1974, Disaccharides and the nutrition of Trichinella spiralis, l. Parasitol. 60:887– 889.Google Scholar
  88. Clegg, J. A., Smyth, J. D. 1968, Growth, development and culture methods: Parasitic Platyhelminths, in: “Chemical Zoology” M. Florkin B. T., Scherr, eds., Academic Press, New York.Google Scholar
  89. Craig, M. C., Nepokroeff, C. M., Lakshmanan, M. R., Porter, J. W. 1972, Effect of dietary change on the rates of synthesis and degradation of rat fatty acid synthetase, Arch. Biochem. Biophys. 152:619– 630.Google Scholar
  90. Crompton, D. W. T. 1977, Qualitative requirements and utilization of nutrients: Acanthocephala, in: “Handbook of Nutrition and Food,” Section D: Nutritional Requirements, Vol. I, M. Rechcigl, Jr., ed., Chemical Rubber Co., Cleveland.Google Scholar
  91. Crompton, D. W. T., Nesheim, M. C. 1973, Relationship between Moniliformis dubius ( Acanthocephala) and the carbohydrate intake of rats, Parasitology 67: 11Google Scholar
  92. Dadd, R. H. 1977, Qualitative requirements and utilization of nutrients: Insects, in: “Handbook of Nutrition and Food,” Section D: Nutritional requirements, Vol. I, M. Rechcigl, Jr., ed, Chemical Rubber Co., Cleveland.Google Scholar
  93. Dunagen, T. T. 1962, Studies on in vitro survival of Acanthocephala, Proc. Helminthol. Soc. Wash. 29:131– 135.Google Scholar
  94. Dunkley, L. C., Metterick, D. F. 1969, Hymenolepis diminuta: Effect of quality of host dietary carbohydrate on growth, Exp. Parasitol. 25:146– 161.Google Scholar
  95. Fairbairn, D. 1969, Lipid components and metabolism of Acanthocephala and Nematoda, in: "Chemical Zoology," M. Florkin and B. T. Scheer, eds.,Academic Press, New York.Google Scholar
  96. Fairbairn, D. 1970, Biochemical adaptation and loss of genetic capacity in helminth parasites, BioI. Rev. 45:29– 72.Google Scholar
  97. Ferguson, J. D., Castro, G. A. 19 Metabolism of intestinal stages of Trichinella spiralis, AIDer. l. Physiol. 225:85–89.Google Scholar
  98. Ginger, C. D. and Fairbairn, D. 1966, Lipid metabolism in helminth parasites. II. The major origins of the lipids of Hymenolepis diminuta (Cestoda), J. Parasitol. 52:1097– 1107.Google Scholar
  99. Graff, D. J. 1964, Metabolism of C14_glucose by Moniliformis dubius (Acanthocephala), 1. Parasitol. 50:230– 234.Google Scholar
  100. Greichus, A., Greichus, Y. A. 1975, Lipid metabolism in the hog roundworm, Int. J. Biochem. 6:1– 7.Google Scholar
  101. Hammond, R. A. 1968, Some observations on the role of the body wall of Acanthocephalus ranae in lipid uptake, J. Exp. Biol. 48:217– 225.Google Scholar
  102. Metterick, D. F., Jackson, D. J. 1977, Qualitative requirements and utilization of nutrients: Platyhelminthes, in: “HandbookGoogle Scholar
  103. of Nutrition and Food,” Section D: Nutritional Requirements, Vol. I, M. Rechcig1, Jr., ed., Chemical Rubber Co., Cleveland.Google Scholar
  104. Meyer, F., Meyer, H. 1972, Loss of fatty acid biosynthesis in flatworms, in: “Comparative Biochemistry of Parasites,” H.Google Scholar
  105. Van den Bossche, ed.,Academic Press, New York.Google Scholar
  106. Meyer, F., Kimura, S. Mueller, J. F. 1966, Lipid metabolism in the larval and adult forms of the tapeworm, SpirometraGoogle Scholar
  107. mansonoides, J. BioI Chern. 241:4224–4232.Google Scholar
  108. Meyer, F., Meyer, H., and Bueding, E. 1970, Lipid metabolism in the parasitic and free living flatworms, Schistosoma mansoniGoogle Scholar
  109. and Dugesia dorotocephala, Biochim. Biophys. Acta. 210: 257–266.Google Scholar
  110. Passey, R. F. and Fairbairn, D. 1957, The conversion of fat to carbohydrate during embryonation of Ascaris eggs, Can Biochem. Physiol. 35:511– 525.Google Scholar
  111. Rathbone, L. and Rees, K. R. 1954, Glycolysis in Ascaris lumbricoides from the pig, Biochim. Biophys. Acta. 15:126– 133.Google Scholar
  112. Read, C. P. 1959, The role of carbohydrates in the biology of cestodes. VIII. Some conclusions and hypotheses, Exp. Parasito1. 8:365– 382.Google Scholar
  113. Read, C. P. 1966, Nutrition of intestinal helminths, in: “The Biology of Parasites,” E. J. L. Soulsby, ed.,Academic Press,Google Scholar
  114. Read, C. P. 1968, Intermediary metabolism of flatworms, in: "Chemical Zoology," M. Florkin and B. T. Scheer, eds Academic Press, New York.Google Scholar
  115. Read, C. P., Rothman, A. H. 1957, The role of carbohydrates in the biology of cestodes. IV. Some effects of host dietary carbohydrates on growth and reproduction of Hymenolepis diminuta, Exp. Parasitol. 6:294– 305.Google Scholar
  116. Read,P., Chiller, E. L., Phifer, K. 1958, The role of carbohydrates in the biology of cestodes. V. Comparative studies on the effects of host dietary carbohydrate on Hymenolepis spp., Exp. Parasitol. 7:198– 216.Google Scholar
  117. Read, C. P. and Simmons, J. E. 1963, Biochemistry and physiology of tapeworms, Physio1. Rev. 43:263– 305.Google Scholar
  118. Rothstein, M. and Nicholas, G. L. 1969, Culture methods and nutrition of nematodes and acanthocephala, in: “Chemical Zoology,” M. Florkin and B. T. Scheer, eds Academic Press, New York.Google Scholar
  119. Romos, D. R. and Leveille, G. A. 1974, Effect of diet on activity of enzymes involved in fatty acid and cholesterol synthesis, Adv. Lip. Res. 12:97– 145.Google Scholar
  120. Saz, H. J. 1969, Carbohydrate and energy metabolism of nematodes and acanthocephala, in: “Chemical Zoology,” M. Florkin and B. T. Scheer, eds.,Academic Press, New York.Google Scholar
  121. Saz, H. J. 1972, Comparative biochemistry of carbohydrates in nematodes and cestodes, in: “Comparative Biochemistry of Parasites,” H. Van den Bossche, ed., Academic Press, New York.Google Scholar
  122. Silverman, P. H. 1965, In vitro cultivation procedures for parasitic helminths, Adv. Biochem. Physiol. 3:159– 222.Google Scholar
  123. Silverman, P. H., Hansen, E. L. 1971, In vitro cultivation procedures for parasitic helminths: Recent advances, Adv. Parasitol. 9:227– 258.Google Scholar
  124. Smith, T., Brooks, T., Lockard, V. 1970, In vitro studies on cholesterol metabolism in the blood fluke, Schistosoma mansoni, Lipids 5:854– 856.Google Scholar
  125. Thompson, s. N. 1975, Defined meridic and holidic diets and aseptic feeding procedures for artificially rearing the ectoparasitoid Exeristes roborator (Fabricius), Ann Entomol Soc Amer. 68:220– 226.Google Scholar
  126. Thompson, s. N. 1976a, Effects of dietary amino acid level and nutritional balance on larval survival and development of theGoogle Scholar
  127. parasite, Exeristes roborator, Ann. Entomol. Soc. Amer. 69: 835–838.Google Scholar
  128. Thompson, s. N. 1976b, Regulation of lipid metabolism in the insect parasite Exeristes roborator. (Fabricius) Parasitol. 62: 303–306.Google Scholar
  129. Thompson, S. N. 1977, Lipid nutrition during larval development of the parasitic wasp. Exeristes Insect Physiol. 23:579– 583.Google Scholar
  130. Thompson, S. N. 1977, Lipid nutrition during larval development of the parasitic wasp. Exeristes Insect Physiol. 23:579– 583.Google Scholar
  131. Thompson, S. N. 1980, Effects of dietary glucose on in vivo fatty acid metabolism and in vitro synthetase activity in the parasiteGoogle Scholar
  132. Thompson, S. N. 1980, Effects of dietary glucose on in vivo fatty acid metabolism and in vitro synthetase activity in the parasiteGoogle Scholar
  133. Thompson, S. N., Adams, J. D. 1976, Characterization of selected lipids of the parasite Exeristes roborator (Fabricius), Comp. Biochem. Physiol. 55B:59l– 593.Google Scholar
  134. Thompson, S. N., Barlow, J. S. 1972, Synthesis of fatty acids by the parasite Exeristes comstockii (hymenoptera) and two hosts, Galleria mellonella (Lep.) and Lucilia sericata (Dip.), Can. J. Zool. 50:1105– 1110.Google Scholar
  135. Thompson, S. N., Barlow, J. S. 1973, The inconsistent phospholipid fatty acid composition in an insect parasitoid, Itoplectis conquisitor, Comp. Biochem. Physiol. 44B:59– 64.Google Scholar
  136. Thompson, S. N., Barlow, J, 1974, The fatty acid composition of parasitic Hymenoptera and its possible biological significance, Ann Entomol Soc Amer. 67:627– 632.Google Scholar
  137. Thompson, S. J. and Jhonson, J. 1978, Further studies on lipid metabolism in the insect parasite Exeristes roborator (Fabricius). Parasitol. 64:731– 740.Google Scholar
  138. Van Handel, E. 1965, The obese mosquito, J. Physiol. 181:478– 486.Google Scholar
  139. Waldbauer, G. P. 1968, The consumption and utilization of food by insects, Adv. Insect Physiol. 5:229– 288.Google Scholar
  140. Ward, C. W. and Fairbairn, D. 1970a, Enzymes of Beta-oxidation and the tricarboxylic acid cycle in adult Hymenolepis diminuta (Cestoda) and Ascaris lumbricoides (Nematoda), J. Parasitol. 56:100– 1012.Google Scholar
  141. Ward, C. W., Fairbairn, D. 1970b, Enzymes of oxidation and their function during development of Ascaris lumbricoides eggs, Devl. BioI. 22:366– 387.Google Scholar
  142. Weinstein, P. P. 1966, The in vitro cultivation of helminths with reference to morphogenesis, in: “The Biology of Parasites,”Google Scholar
  143. E. L. J. Soulsby, ed., Academic Press, New York.Google Scholar
  144. Yazgan, S. 1972, A chemically defined synthetic diet and larval nutritional requirements of the endoparasitoid Itoplectis conquisitor (Hymenoptera), J Insect Physiol. 18:2123– 2142.Google Scholar
  145. Zakim, D. 1973, Influence of fructose on hepatic synthesis of lipids, Prog. Biochem. Pharmacol.8:l6l– l88.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • S. N. Thompson
    • 1
  1. 1.Division of Biological ControlUniversity of CaliforniaRiversideUSA

Personalised recommendations