Advertisement

Reactions of Silicon Atoms and Silylenes

  • Yi-Noo Tang

Abstract

The first two members of the Group IVA elements, carbon and silicon, share the common property that they can combine with four entities through covalent bonding, and therefore may be installed as the backbones of thousands of complicated molecules. The study of the various carbon-containing compounds during the past two centuries has already been developed into a major branch of chemistry. Although the investigation of silicon-containing systems is somewhat less extensive, vast amounts of information have been accumulated during the recent decades.

Keywords

Silicon Atom Ground Electronic State Insertion Reaction Nuclear Recoil Silylene Addition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. L. Timms, R. A. Kent, T. C. Ehlert, and J. L. Margrave, Nature 207, 187 (1965).ADSGoogle Scholar
  2. 2.
    O. M. Nefedov and M. N. Manakov, Angew. Chem. Int. Ed. Engl. 5, 1021 (1966).Google Scholar
  3. 3.
    J. C. Thompson and J. L. Margrave, Science 155, 669 (1967).ADSGoogle Scholar
  4. 4.
    P. L. Timms, in Preparatve Inorganic Reactions, Vol. 4, W. L. Jolly, Ed., Interscience, New York (1968), pp. 59–83.Google Scholar
  5. 5.
    D. R. Weyenberg and W. H. Atwell, Pure Appl. Chem. 19, 343 (1969).Google Scholar
  6. 6.
    W. H. Atwell and D. R. Weyenberg, Angew. Chem. Int. Ed. Engl. 8, 469 (1969).Google Scholar
  7. 7.
    C. H. Yoder and J. J. Zuckerman, in Preparative Inorganic Reactions, Vol. 6, W. L. Jolly, Ed., Wiley-Interscience, New York (1971), pp. 81–153.Google Scholar
  8. 8.
    J. L. Margrave and P. W. Wilson, Account. Chem. Res. 4, 145 (1971).Google Scholar
  9. 9.
    I. M. T. Davidson, Chem. Soc. Q. Rev. 25, 111 (1971).Google Scholar
  10. 10.
    P. P. Gaspar and B. J. Herold, Silicon, germanium, and tin structural analogs of carbenes, in Carbene Chemistry, 2nd ed., W. Kirmse, Ed., Academic Press, New York (1971), pp. 504–550.Google Scholar
  11. 11.
    P. L. Timms, Low temperature condensation of high temperature species as a synthesis method, in Adv. Inorg. Chem. Radiochem. 14, 121 (1972).Google Scholar
  12. 12.
    J. L. Margrave, K. G. Sharp, and P. W. Wilson,Top. Curr. Chem. 26, 1 (1972).Google Scholar
  13. 13.
    W. H. Atwell and D. R. Weyenberg, Intra-Sci. Chem. Rep. 7, 139 (1973).Google Scholar
  14. 14.
    P. L. Timms, 24th Int. Congr. Pure Appl. Chem. (1973), Plenary Main Sect. Lect. 4, 25 (1974).Google Scholar
  15. 15.
    Y. Nakadaira, Kagaku No. Ryoiki 29, 188 (1975); Chem, Abstr. 83, 146617s (1975).Google Scholar
  16. 16.
    P. P. Gaspar, inReactive Intermediates, Vol. 1, M. Jones, Jr., and R. A. Moss, Ed., John Wiley and Sons, New York (1978), pp. 229–237.Google Scholar
  17. 17.
    L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals, 3rd ed., Cornell University Press, Ithaca, New York (1959).Google Scholar
  18. 18.
    E. A. V. Ebsworth, Volatile Silicon Compounds, Pergamon Press, New York (1963).Google Scholar
  19. 19.
    P. P. Gaspar, B. D. Pate, and W. C. Eckelman,J. Am. Chem. Soc. 88, 3878 (1966).Google Scholar
  20. 20.
    G. Cetini, O. Gambino, M. Castiglioni, and P. Volpe, Atti R. Accad. Sci. Torino CI. Sci. Fis. Mat. Nat. 101, 749 (1966–1967); Chem. Abstr., 68, 55657d (1968).Google Scholar
  21. 21.
    P. P. Gaspar, S. A. Bock, and C. A. Levy, Chem. Commun., 1317 (1968).Google Scholar
  22. 22.
    P. P. Gaspar, S. A. Bock, and W. C. Eckelman,Am. Chem. Soc. 90, 6914 (1968).Google Scholar
  23. 23.
    D. K. Snediker and W. W. Miller, Radiochimica Acta 10, 30 (1968).Google Scholar
  24. 24.
    G. Cetini, M. Castiglioni, P. Volpe, and O. Gambino, Ric. Sci. 39, 392 (1969); Chem. Abstr. 73, 20515g (1970).Google Scholar
  25. 25.
    P. P. Gaspar and P. Markusch,Chem. Commun., 1331 (1970).Google Scholar
  26. 26.
    P. P. Gaspar, P. Markusch, J. D. Holton, III, and J. J. Frost, J. Phys. Chem. 76, 1352 (1972).Google Scholar
  27. 27.
    Y.-N. Tang, G. P. Gennaro, and Y. Y. Su,J. Am. Chem. Soc. 94, 4355 (1972).Google Scholar
  28. 28.
    G. P. Gennaro, Y. Y. Su, O. F. Zeck, S. H. Daniel, and Y.-N. Tang, J. Chem. Soc. Chem. Commun., 637 (1973).Google Scholar
  29. 29.
    P. P. Gaspar, R.-J. Hwang, and W. C. Eckelman, J. Chem. Soc. Chem. Commun., 242 (1974).Google Scholar
  30. 30.
    O. F. Zeck, Y. Y. Su, G. P. Gennaro, and Y.-N. Tang,J. Am. Chem. Soc. 96, 5967 (1974).Google Scholar
  31. 31.
    O. F. Zeck, Y. Y. Su, and Y.-N. Tang, J. Chem. Soc. Chem. Commun., 156 (1975).Google Scholar
  32. 32.
    K. Kawamoto, Ann. Rep. Res. React. Inst. Kyoto Univ. 8, 26 (1975).Google Scholar
  33. 33.
    O. F. Zeck, Y. Y. Su, G. P. Gennaro, and Y.-N. Tang,J. Am. Chem. Soc. 98, 3474 (1976).Google Scholar
  34. 34.
    R. A. Ferrieri, E. E. Siefert, M. J. Griffin, O. F. Zeck, and Y.-N. Tang, J. Chem. Soc. Chem. Commun., 6 (1977),Google Scholar
  35. 35.
    R.-J. Hwang and P. P. Gaspar, Am. Chem. Soc. 100, 6626 (1978).Google Scholar
  36. 36.
    E. E. Siefert, R. A. Ferrieri, O. F. Zeck, and Y.-N. Tang, Inorg. Chem. 17, 2802 (1978).Google Scholar
  37. 37.
    H. S. Massey and E. H. Burhop, Electronic and Ionic Impact Phenomena, Clarendon Press, Oxford (1952), p. 441.MATHGoogle Scholar
  38. 38.
    J. A. Gründl, R. L. Henkel, and B. L. Perkins, Phys. Rev. 109, 425 (1958).ADSGoogle Scholar
  39. 39.
    P. S. Skell and P. W. Owen,J. Am. Chem. Soc. 89, 3933 (1967).Google Scholar
  40. 40.
    P. S. Skell and P. W. Owen,J. Am. Chem. Soc. 94, 5434 (1972).Google Scholar
  41. 41.
    R. E. Honig, J. Chem. Phys. 22, 1610 (1954).ADSGoogle Scholar
  42. 42.
    E. E. Siefert, K.-L. Loh, R. A. Ferrieri, and Y.-N. Tang, unpublished results (1979).Google Scholar
  43. 43.
    T. C. Ehlert and J. L. Margrave, J. Chem. Phys. 41, 1066 (1964).ADSGoogle Scholar
  44. 44.
    A. S. Kana’an and J. L. Margrave, Inorg. Chem. 3, 1037 (1964).Google Scholar
  45. 45.
    W. I. Zubkov, M. V. Tichomirova, K. A. Andrianov, and S. A. Golubzov,Dokl. Akad. Nauk SSSR 159, 599 (1964); Chem. Abstr. 62, 4760d (1965).Google Scholar
  46. 46.
    S. A. Golubzov and K. A. Andrianov, Dokl. Akad. Nauk SSSR 151, 1329 (1963).Google Scholar
  47. 47.
    J. Jolik and V. Bozant,Collect. Czech. Chem. Commun. 29, 603, 834 (1964).Google Scholar
  48. 48.
    L. Brewer and R. K. Edwards, J. Phys. Chem. 58, 351 (1954).Google Scholar
  49. 49.
    O. H. Wheeler and J. E. Trabal, Rev. Latinoamer. Quirn. 1, 61 (1970); Chem. Abstr. 74, 93607u (1971).Google Scholar
  50. 50.
    R. J. Madix and J. A. Schwarz, Surf. Sei. 24, 264 (1971).ADSGoogle Scholar
  51. 51.
    Ogier, Ann. Chim. 20, 37 (1880).Google Scholar
  52. 52.
    T. R. Hogness, T. L. Wilson, and W. C. Johnson,J. Am. Chem. Soc. 58, 108 (1936).Google Scholar
  53. 53.
    R. Schwartz and F. Heinrich, Z. Z. Anorg. Allg. Chem. 221, 277 (1935).Google Scholar
  54. 54.
    K. Stokland, Kgl. Nor. Vidensk. Selsk. Skr. 3, 1 (1950).Google Scholar
  55. 55.
    D. G. White and E. G. Rochow, J. Am. Chem. Soc. 76, 3897 (1954).Google Scholar
  56. 56.
    J. H. Purnell and R. Walsh, Proc. R. Soc. London 293, 543 (1966).ADSGoogle Scholar
  57. 57.
    M. A. Ring, M. J. Puentes, and H. E. O’Neal,J. Am. Chem. Soc. 92, 4845 (1970).Google Scholar
  58. 58.
    C. G. Newman, M. A. Ring, and H. E. O’Neal, J. Am. Chem. Soc. 100, 5945 (1978).Google Scholar
  59. 59.
    H. J. Emeleus and K. Stewart, Trans. Faraday Soc. 32, 1577 (1936).Google Scholar
  60. 60.
    H. Niki and G. J. Mains, J. Phys. Chem. 68, 304 (1964).Google Scholar
  61. 61.
    M. A. Nay, G. N. C. Woodall, O. P. Strausz, and H. E. Gunning, J. Am. Chem. Soc. 87, 179 (1965).Google Scholar
  62. 62.
    I. Dubois, Can. J. Phys. 46, 2485 (1968).ADSGoogle Scholar
  63. 63.
    M. A. Ring, G. D. Beverly, F. H. Koester, and R. P. Hollandsworth, Inorg. Chem. 8, 2033 (1969).Google Scholar
  64. 64.
    O. P. Strausz, K. Obi, and W. K. Duholke, J. Am. Chem. Soc. 90, 1359 (1968).Google Scholar
  65. 65.
    K. Obi, A. Clement, H. E. Gunning, and O. P. Strausz, J. Am. Chem. Soc. 91, 1622 (1969).Google Scholar
  66. 66.
    J. J. Kohanek, P. Estacio, and M. A. Ring, Inorg. Chem. 8, 2516 (1969).Google Scholar
  67. 67.
    J. W. C. Johns, A. W. Chantry, and R. F. Barrow, Trans. Faraday Soc. 54, 1580 (1958).Google Scholar
  68. 68.
    D. R. Rao and P. Venkateswarlu, J. Mol. Spectrosc. 7, 287 (1961).ADSGoogle Scholar
  69. 69.
    K. Wieland and M. Heise, Angew. Chem. 63, 438 (1951).Google Scholar
  70. 70.
    H. Schafer, Z. Anorg. Allg. Chem. 274, 2651 (1963).Google Scholar
  71. 71.
    E. Wolf and C. Herbst, Z. Chem. 7, 34 (1967).Google Scholar
  72. 72.
    D. M. Schmeiser and K. Friederrick, Angew. Chem. 76, 782 (1964).Google Scholar
  73. 73.
    D. E. Milligan and M. E. Jacox, J. Chem. Phys. 49, 4269 (1968).ADSGoogle Scholar
  74. 74.
    D. E. Milligan and M. E. Jacox, J. Chem. Phys. 49, 1938 (1968).ADSGoogle Scholar
  75. 75.
    G. Herzberg and R. D. Verma, Can. J. Phys. 43, 395 (1964).ADSGoogle Scholar
  76. 76.
    E. Sirtl and K. Reusche, Z. Anorg. Allg. Chem. 332, 113 (1964); Chem. Abstr. 62, 6137f (1965).Google Scholar
  77. 77.
    K. G. Calvert and J. N. Pitts, Jr.,Photochemistry, Wiley, New York (1966), p. 497.Google Scholar
  78. 78.
    A. J. Vanderwielen, M. A. Ring, and H. E. O’Neal, J. Am. Chem. Soc. 97, 993 (1975).Google Scholar
  79. 79.
    H. J. Emeleus and C. Reid, J. Chem. Soc., 1021 (1939).Google Scholar
  80. 80.
    K. Stokland, Trans. Faraday Soc. 44, 545 (1948).Google Scholar
  81. 81.
    E. M. Tebben and M. A. Ring, Inorg. Chem. 8, 1787 (1969).Google Scholar
  82. 82.
    P. Estacio, M. D. Sefcik, E. K. Chan, and M. A. Ring, Inorg. Chem. 9, 1068 (1970).Google Scholar
  83. 83.
    M. Bowrey and J. H. Purnell, J. Am. Chem. Soc. 92, 2594 (1970).Google Scholar
  84. 84.
    M. Bowrey and J. H. Purnell, Proc. R. Soc. London 321, 341 (1971).ADSGoogle Scholar
  85. 85.
    C. Friedel and A. Ladenburg, Liebigs Ann. Chem. 203, 241 (1880).Google Scholar
  86. 86.
    C. J. Wilkins, Chem. Soc., 3409 (1953).Google Scholar
  87. 87.
    N. W. Kohlschutter and H. Mattner, Z. Anorg. Allg. Chem. 282, 169 (1955);Chem. Abstr. 50, 8363d (1956).Google Scholar
  88. 88.
    A. Pflugmacher and I. Rohrmann, Z. Anorg. Allg. Chem. 290, 101 (1957); Chem. Abstr. 51, 7903i (1957).Google Scholar
  89. 89.
    G. Urry and A. Kaczmarczyk, Angew. Chem. 72, 387 (1960).Google Scholar
  90. 90.
    G. Urry and A. Kaczmarczyk, J. Am. Chem. Soc. 82, 751 (1960).Google Scholar
  91. 91.
    M. Schmeisser and K.-P. Ehlers, Angew. Chem. 76, 781 (1964); Angew. Chem. Int. Ed. Engl. 3, 700 (1964).Google Scholar
  92. 92.
    E. A. Chernyshev, N. G. Komalenkova, and S. A. Bashkirova, Zh. Obshch. Khim. 41, 1175 (1971); Chem. Abstr. 75, 76912t (1971).Google Scholar
  93. 93.
    R. L. Jenkins, A. J. Vanderwielen, S. P. Ruis, S. R. Gird, and M. A. Ring, Inorg. Chem. 12, 2968 (1973).Google Scholar
  94. 94.
    R. B. Baird, M. D. Sefcik, and M. A. Ring, Inorg. Chem. 10, 883 (1971).Google Scholar
  95. 95.
    H. Sakurai, A. Hosomi, and M. Kumada, Chem. Commun., 4 (1969).Google Scholar
  96. 96.
    I. M. T. Davidson and I. L. Stephenson,J. Chem. Soc. A, 282 (1968).Google Scholar
  97. 97.
    R. E. Saalfleld and H. J. Svec, Inorg. Chem. 3, 1442 (1964).Google Scholar
  98. 98.
    W. C. Steele and F. G. A. Stone,J. Am. Chem. Soc. 84, 3599 (1962).Google Scholar
  99. 99.
    W. H. Atwell and D. R. Weyenberg, J. Organometal. Chem. 5, 594 (1966).Google Scholar
  100. 100.
    W. H. Atwell and D. R. Weyenberg, J. Am. Chem. Soc. 90, 3438 (1968).Google Scholar
  101. 101.
    J. V. Urenovitch and A. G. MacDiarmid, J. Am. Chem. Soc. 85, 3372 (1963).Google Scholar
  102. 102.
    L. E. Elliott, P. Estacio, and M. A. Ring, Inorg. Chem. 12, 2193 (1973).Google Scholar
  103. 103.
    M. D. Sefcik and M. A. Ring,J. Am. Chem. Soc. 95, 5169 (1973).Google Scholar
  104. 104.
    H. Sakurai, Y. Kobayashi, and Y. Nakadaira, J. Am. Chem. Soc. 93, 5272 (1971).Google Scholar
  105. 105.
    M. Ishikawa, M. Ishiguro, and M. Kumada, J. Organometal. Chem. 49, C71 (1973).Google Scholar
  106. 106.
    M. Ishikawa and M. Kumada,J. Organometal. Chem. 81, C3 (1974).Google Scholar
  107. 107.
    M. Ishikawa, F. Ohi, and M. Kumada, J. Organometal. Chem. 86, C23 (1975).Google Scholar
  108. 108.
    M. Ishikawa and M. Kumada, Chem. Commun., 612 (1970).Google Scholar
  109. 109.
    M. Ishikawa and M. Kumada, J. Chem. Soc. Chem. Commun507 (1971).Google Scholar
  110. 110.
    M. Ishikawa and M. Kumada, Chem. Soc. Chem. Commun., 489 (1971).Google Scholar
  111. 111.
    M. Ishikawa and M. Kumada,J. Organometal. Chem. 42, 325 (1972).Google Scholar
  112. 112.
    M. Ishikawa, T. Takaoka, and M. Kumada,J. Organometal. Chem. 42, 333 (1972).Google Scholar
  113. 113.
    M. E. Volpin, Yu. D. Koreshkov, V. G. Dulova, and D. N. Kursanov, Tetrahedron 18, 107 (1962).Google Scholar
  114. 114.
    O. M. Nefedov and M. N. Manakov, Angew. Chem. 76, 270 (1964); Angew. Chem. Int. Ed. Engl. 3, 226 (1964).Google Scholar
  115. 115.
    O. M. Nefedov, G. Garzo, T. Szekei, and V. I. Shiryaev, Proc. Acad. Sci. USSR Chem. Sect. Engl. Trans. 164, 945 (1965).Google Scholar
  116. 116.
    R. L. Lambert, Jr. and D. Seyferth, J. Am. Chem. Soc. 94, 9246 (1972).Google Scholar
  117. 117.
    D. Seyferth and D. C. Annarelli,J. Am. Chem. Soc. 97, 325 (1972).Google Scholar
  118. 118.
    D. Seyferth and D. C. Annarelli, J. Am. Chem. Soc. 97, 7162 (1975).Google Scholar
  119. 119.
    D. Seyferth and D. C. Annarelli, J. Organometal. Chem.,117 C51 (1976).Google Scholar
  120. 120.
    J. H. Gilman, S. G. Cottis, and W. H. Atwell, J. Am. Chem. Soc. 86, 1596 (1964).Google Scholar
  121. 121.
    J. H. Gilman, S. G. Cottis, and W. H. Atwell, J. Am. Chem. Soc. 86, 5548 (1964).Google Scholar
  122. 122.
    N. K. Hota and C. J. Willis, J. Organometal. Chem. 15, 89 (1968).Google Scholar
  123. 123.
    J. R. Maruca, J. Organometal. Chem. 36, 1626 (1971).Google Scholar
  124. 124.
    T. J. Barton, A. J. Nelson, and J. Clardy, J. Organometal. Chem. 37, 895 (1972).Google Scholar
  125. 125.
    T. J. Maruca, R. Fischer, L. Roseman, and A. Gehring, J. Organometal. Chem. 49, 139 (1973).Google Scholar
  126. 126.
    E. Wilberg, O. Stecker, H. J. Andrascheck, Z. Kreuzbichler, and E. Staude, Angew. Chem. 75, 516 (1963); Angew. Chem. Intern. Ed. Eng. 2, 507 (1963).Google Scholar
  127. 127.
    K. Yamamoto, H. Okinoshima, and M. Kumada, J. Organometal. Chem. 23, C7 (1970).Google Scholar
  128. 128.
    K. Yamamoto, H. Okinoshima, and M. Kumada, J. Organometal. Chem. 27, C31 (1971).Google Scholar
  129. 129.
    H. Okimoshima, K. Yamamoto, and M. Kumada, J. Am. Chem. Soc. 94, 9263 (1972).Google Scholar
  130. 130.
    Y. P. Yurev, I. M. Salimgaruva, O. Zh. Zhebarov, G. A. Tolstikov, and S. R. Rafikov, Dokl. Akad. Nauk SSSR. 224, 1092 (1075).Google Scholar
  131. 131.
    E. G. Bylander, J. Electrochem. Soc. 109, 1171 (1962).Google Scholar
  132. 132.
    W. Steinmaier,Philips Res. Rep. 18, 75 (1963).Google Scholar
  133. 133.
    R. R. Monchamp, W. J. McAleer, and P. I. Pollak, J. Electrochem. Soc. 111, 879 (1964).Google Scholar
  134. 134.
    P. S. Skell and E. J. Goldstein, J. Am. Chem. Soc. 86, 1442 (1964) (first paper).Google Scholar
  135. 135.
    P. S. Skell and E. J. Goldstein, J. Am. Chem. Soc. 86, 1442 (1964) (second paper).Google Scholar
  136. 136.
    W. Kirmse, Carbene Chemistry, 2nd ed., Academic Press, New York (1971).Google Scholar
  137. 137.
    P. P. Gaspar and G. S. Hammond, in Carbenes, Vol. II, R. A. Moss and M. Jones, Jr., Eds., John Wiley & Sons, New York (1975), p. 207.Google Scholar
  138. 138.
    P. C. Jordan,J. Chem. Phys. 44, 3400 (1966).ADSGoogle Scholar
  139. 139.
    I. Dubois, G. Herzberg, and R. D. Verma,J. Chem. Phys. 47, 4262 (1967).ADSGoogle Scholar
  140. 140.
    H. P. Hopkins, J. C. Thompson, J. L. Margrave, J. Am. Chem. Soc. 90, 901 (1968).Google Scholar
  141. 141.
    V. M. Rao and R. I. Curl, J. Chem. Phys. 45, 2032 (1966).ADSGoogle Scholar
  142. 142.
    V. M. Khanna, G. Besenbruch, and J. L. Margrave, J. Chem. Phys. 46, 2310 (1967).ADSGoogle Scholar
  143. 143.
    V. M. Khanna, R. Hauge, R. F. Curl, Jr., and J. L. Margrave, J. Chem. Phys. 47, 5031 (1967).ADSGoogle Scholar
  144. 144.
    J. M. Bassler, P. L. Timms, and J. L. Margrave, Inorg. Chem. 5, 729 (1966).Google Scholar
  145. 145.
    C. Leibovici and J. F. Labarre, J. Chim. Phys. Chim. Biol. 72, 951 (1975).Google Scholar
  146. 146.
    B. Wirsam, Chem. Phys. Lett. 14, 214 (1972).ADSGoogle Scholar
  147. 147.
    J. Higuchi, S. Kubota, T. Kumamoto, and I. Tolue, Bull. Chem. Soc. Japan 47, 2775 (1974).Google Scholar
  148. 148.
    P. Zahradnik and J. Leska,Collect. Czech. Chem. Commun. 42, 2060 (1977).Google Scholar
  149. 149.
    V. M. Rao, R. F. Curie, P. L. Timms, and J. L. Margrave, J. Chem. Phys. 47, 5031 (1967).ADSGoogle Scholar
  150. 150.
    J. L. Gole, R. H. Hauge, J. L. Margrave, and J. W. Hastie, J. Mol. Spectrosc. 43, 441 (1972).ADSGoogle Scholar
  151. 151.
    J. W. Hastie, R. H. Hauge, and J. L. Margrave,J. Am. Chem. Soc. 91, 2536 (1969).Google Scholar
  152. 152.
    C. Thomson, Theor. Chim. Acta. 32, 93 (1973).Google Scholar
  153. 153.
    M. W. Chase, J. L. Curnutt, A. H. Hu, H. Prophet, A. H. Syverud, and L. C. Walker, J. Phys. Chem. Ref. Data 3, 408 (1974).Google Scholar
  154. 154.
    G. Maass, R. H. Hauge, and J. L. Margrave, Z. Anorg. Allg. Chem. 392, 295 (1972).Google Scholar
  155. 155.
    J. Billingsley, Can. J. Phys. 50, 531 (1972).ADSGoogle Scholar
  156. 156.
    V. V. Dudorov, Zh. Fiz. Khim. 49, 1036 (1975) (Eng. Edit. p. 607).Google Scholar
  157. 157.
    P. John and J. H. Purnell, J. Chem. Soc. Faraday Trans. I 69, 1455 (1973).Google Scholar
  158. 158.
    P. John and J. H. Purnell, J. Organomental. Chem. 29, 233 (1971).Google Scholar
  159. 159.
    F. G. Saalfeld and M. V. McDowell, Inorg. Chem. 6, 96 (1967).Google Scholar
  160. 160.
    H. Schaefer, H. Bruderreck, and B. Morcher, Z. Anorg. Allg. Chem. 352, 122 (1967); Chem. Abstr. 67, 57767t (1967).Google Scholar
  161. 161.
    J. L. Margrave, A. S. Kana’an, and D. C. Pease,J. Phys. Chem. 66, 1200 (1962).Google Scholar
  162. 162.
    A. D. Rusin and O. P. Yakovlev, Vestn. Mosk. Univ. Khim. 13, 716 (1972); Chem. Abstr. 78, 76477s (1973); 17, 170 (1976); Chem. Abstr. 85, 149768u (1976).Google Scholar
  163. 163.
    A. D. Rusin, O. P. Yakovlev, and N. A. Ereshko,Vestn. Mosk. Univ. Khim. 15, 154 (1974); Chem. Abstr. 83, 184421f (1975).Google Scholar
  164. 164.
    E. Wolf and C. Herbst, Z. Anorg. Allg. Chem. 347, 113 (1966); Chem. Abstr. 66, 41211a (1967).Google Scholar
  165. 165.
    R. Teichmann and E. Wolf, Z. Anorg. Allg. Chem. 347, 145 (1966); Chem. Abstr. 66, 41212b (1967).Google Scholar
  166. 166.
    M. Farber and R. D. Srivastava, J. Chem. Soc. Faraday Trans. I 73, 1672 (1977).Google Scholar
  167. 167.
    I. M. T. Davidson and A. V. Howard, Chem. Soc. Faraday Trans. I 71, 69 (1975).Google Scholar
  168. 168.
    J. L. Margrave, K. G. Sharp, and P. W. Wilson, Inorg. Nucl. Chem. Lett. 5, 995 (1969).Google Scholar
  169. 169.
    J. F. Bald, K. G. Sharp, and A. G. MacDiarmid,J. Fluorine Chem. 3, 433 (1973).Google Scholar
  170. 170.
    K. G. Sharp and J. F. Bald, Jr., Inorg. Chem. 14, 2553 (1975).Google Scholar
  171. 171.
    J. L. Margrave, K. G. Sharp, and P. W. Wilson,J. Am. Chem. Soc. 92, 1530 (1970).Google Scholar
  172. 172.
    K. G. Sharp and J. L. Margrave, Inorg. Chem. 8, 2655 (1969).Google Scholar
  173. 173.
    R. W. Kirk and P. L. Timms, J. Am. Chem. Soc. 91, 6315 (1969).Google Scholar
  174. 174.
    D. L. Smith, R. W. Kirk, and P. L. Timms, Chem. Soc. Chem. Commun., 295 (1972).Google Scholar
  175. 175.
    P. L. Timms, T. C. Ehlert, J. L. Margrave, F. E. Brinckman, T. C. Farrar, and T. D. Coyle, J. Am. Chem. Soc. 87, 3819 (1965).Google Scholar
  176. 176.
    D. Solan and A. B. Burg, Inorg. Chem. 11, 1253 (1972).Google Scholar
  177. 177.
    R. W. Kirk, and P. L. Timms, J. Am. Chem. Soc. 90, 901 (1968).Google Scholar
  178. 178.
    C. Lau and J. C. Thompson, Inorg. Nucl. Chem. Lett. 13, 433 (1977).Google Scholar
  179. 179.
    D. C. Pease, U. S. Pat. 3,026,173 (1962); Chem. Abstr. 57, 30811 (1962).Google Scholar
  180. 180.
    P. L. Timms, R. A. Kent, T. C. Ehlert, and J. L. Margrave, J. Am. Chem. Soc. 87, 2824 (1965).Google Scholar
  181. 181.
    J. L. Margrave, D. L. Williams, and P. W. Wilson, Inorg. Nucl. Chem. Lett. 7, 103 (1971).Google Scholar
  182. 182.
    K. G. Sharp and J. L. Margrave, J. Inorg. Nucl. Chem. 33, 2913 (1971).Google Scholar
  183. 183.
    K. G. Sharp, Diss. Abstr. Int. 30, 2072 (1969).Google Scholar
  184. 184.
    D. Solan and P. L. Timms, Inorg. Chem. 7, 2157 (1968).Google Scholar
  185. 185.
    J. L. Margrave, K. G. Sharp, and P. W. Wilson,J. Inorg. Nucl Chem. 32, 1813 (1970).Google Scholar
  186. 186.
    J. L. Margrave, K. G. Sharp, and P. W. Wilson,Inorg. Nucl. Chem. 32, 1817 (1970).Google Scholar
  187. 187.
    J. C. Thompson, J. L. Margrave, and P. L. Timms, Chem. Commun., 566 (1966).Google Scholar
  188. 188.
    A. Orlando, C.-S. Liu, and J. C. Thompson, J. Fluorine Chem. 2, 103 (1972–1973).Google Scholar
  189. 189.
    C.-S. Liu and J. Thompson,J. Organomental. Chem. 38, 249 (1972).Google Scholar
  190. 190.
    C.-S. Liu, J. L. Margrave, J. C. Thompson, and P. L. Timms, Can. J. Chem. 50, 459 (1972).Google Scholar
  191. 191.
    C.-S. Liu and J. C. Thompson, Inorg. Chem. 10, 1100 (1971).Google Scholar
  192. 192.
    J. C. Thompson and J. L. Margrave, Inorg. Chem. 11, 913 (1972).Google Scholar
  193. 193.
    A. G. MacDiarmid and F. M. Rabel, unpublished results quoted in O. M. Nefedov and M. N. Manakov, Angew. Chem. Int. Ed. Engl. 5, 1021 (1966) and in Preparative Inorganic Reactions, Vol. 6, W. L. Jolly, Ed., Wiley-Interscience, New York (1971), pp. 81–153.Google Scholar
  194. 194.
    P. L. Timms, D. D. Stump, R. A. Kent, and J. L. Margrave, J. Am. Chem. Soc. 88, 940 (1966).Google Scholar
  195. 195.
    F. D. Catrett, III,Diss. Abstr. Int. B. 33, 1438 (1972).Google Scholar
  196. 196.
    F. D. Catrett and J. L. Margrave, Syn. Inorg. Metal-Org. Chem. 2, 329 (1972).Google Scholar
  197. 197.
    F. D. Catrett and J. L. Margrave, J. Inorg. Nucl. Chem. 35, 1087 (1973).Google Scholar
  198. 198.
    J. L. Margrave and D. L. Perry, Inorg. Chem. 16, 1820 (1977).Google Scholar
  199. 199.
    R. T. Conlin and P. P. Gaspar, J. Am. Chem. Soc. 98, 868 (1976).Google Scholar
  200. 200.
    D. N. Roark and G. J. D. Peddle, Am. Chem. Soc. 94, 5837 (1972).Google Scholar
  201. 201.
    W. H. Atwell and J. G. Uhlmann, J. Organomental Chem. 52, C21 (1973).Google Scholar
  202. 202.
    T. J. Barton and J. A. Kilgour, J. Am. Chem. Soc. 96, 7150 (1974).Google Scholar
  203. 203.
    Y. Nadadaira, T. Kobayashi, T. Oruska, and H. Sakurai, J. Am. Chem. Soc. 101, 486 (1979).Google Scholar
  204. 204.
    B. Cox and H. Purnell, Trans. Faraday Soc. 71, 859 (1975).Google Scholar
  205. 205.
    M. D. Sefcik and M. A. Ring, J. Organomental Chem. 59, 167 (1973).Google Scholar
  206. 206.
    J. A. Morrison and M. A. Ring, Inorg. Chem. 6, 100 (1967).Google Scholar
  207. 207.
    G. R. Langford, D. C. Moody and J. D. Odom, Inorg. Chem. 14, 134 (1975).Google Scholar
  208. 208.
    P. L. Timms,Inorg. Chem. 7, 387 (1968).Google Scholar
  209. 209.
    P. L. Timms, unpublished results quoted in W. H. Atwell and D. R. Weyenberg, Angew. Chem. Int. Ed. Engl 8, 469 (1969).Google Scholar
  210. 210.
    W. H. Atwell, L. G. Mahone, S. F. Hayes, and J. G. Uhlmann, J. Organomental Chem. 18, 69 (1969).Google Scholar
  211. 211.
    H. S. Soysa, H. S. Dilanjan, H. Okinoshima, and W. P. Weber, J. Organomental Chem. 133, C17 (1977).Google Scholar
  212. 212.
    H. Okinoshima and W. P. Weber, J. Organomental Chem. 150, C25 (1978).Google Scholar
  213. 213.
    P. W. Owen and P. S. Skell, Tetrahedron Lett. 18, 1807 (1972).Google Scholar
  214. 214.
    R. L. Jenkins, R. A. Kedrowski, L. E. Elliott, D. C. Tappen, D. J. Schlyer, and M. A. Ring, J. Organomental Chem. 86, 347 (1975).Google Scholar
  215. 215.
    R.-J. Hwang, R. T. Conlin, and P. P. Gaspar, J. Organomental Chem. 94, C38 (1975).Google Scholar
  216. 216.
    P. P. Gaspar and R.-J. Hwang, J. Am. Chem. Soc. 96, 6198 (1974).Google Scholar
  217. 217.
    C. H. Haas and M. A. Ring, Inorg. Chem. 14, 2253 (1975).Google Scholar
  218. 218.
    E. A. Chernyshev, N. G. Komalenkova, and S. A. Bashkirova, Dokl. Akad. Nauk SSSR 205, 868 (1972); Chem. Abstr. 77, 152265t (1972).Google Scholar
  219. 219.
    E. A. Chernyshev, N. G. Komalenkova, and S. A. Bashkirova,Nov. Khim. Karbenov Mater. Vses. Soveshch Khim. Karbenov Ikh Analogov. 1st. 1972 (Pub. 1973); Chem. Abstr. 82, 57793h (1975).Google Scholar
  220. 220.
    E. A. Chernyshev, N. G. Komalenkova, T. A. Klochkova, and T. M. Kuz’mina,Zh. Obshch. Khim. 45, 2223 (1975); Chem. Abstr. 84, 59630t (1976).Google Scholar
  221. 221.
    O. M. Nefedov, M. N. Manakov, and A. D. Petrov,Plaste Kautschuk 10, 721, 736 (1963); Chem. Abstr. 60, 9304g (1964).Google Scholar
  222. 222.
    D. R. Weyenberg, L. H. Toporcer, and E. A. Bey, J. Org. Chem. 30, 4096 (1965).Google Scholar
  223. 223.
    O. M. Nefedov, M. N. Manakov, and A. D. Petrov, Dokl. Akad. Nauk SSSR 154, 395 (1964) (Engl. Trans., p. 76).Google Scholar
  224. 224.
    R. T. Conlin, Diss. Abstr. Int. B. 37, 3955 (1977).Google Scholar
  225. 225.
    R. T. Conlin and P. P. Gaspar, J. Am. Chem. Soc. 98, 3715 (1976).Google Scholar
  226. 226.
    W. Ando, M. Ikeno, and A. Sekiguchi, J. Am. Chem. Soc. 99, 6447 (1977).Google Scholar
  227. 227.
    M. E. Childs and W. P. Weber, Tetrahedron Lett., 4033 (1974).Google Scholar
  228. 228.
    M. E. Childs and W. P. Weber, J. Org. Chem. 41, 1799 (1976).Google Scholar
  229. 229.
    E. E. Siefert, R. A. Ferrieri, and Y.-N. Tang, unpublished results (1979).Google Scholar
  230. 230.
    R. West and R. E. Bailey, Am. Chem. Soc. 85, 2871 (1963).Google Scholar
  231. 231.
    F. Johnson, R. S. Gohlke, and W. H. Nasutavicus, J. Organometal. Chem. 3, 233 (1965).Google Scholar
  232. 232.
    N. G. Bokii and Yu. T. Stuchkow, Struct. Chem. USSR 6, 543 (1965).Google Scholar
  233. 233.
    D. Seyferth, D. C. Annarelli and S. C. Vick, J. Am. Chem. Soc. 98, 6382 (1976).Google Scholar
  234. 234.
    H. Sakurai, Y. Kamiyama, and Y. Nakadaira, J. Am. Chem. Soc. 99, 3879 (1977).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Yi-Noo Tang
    • 1
  1. 1.Department of ChemistryTexas A & M UniversityCollege StationUSA

Personalised recommendations