Methods for Selective, Restricted Lesion Placement in the Central Nervous System

  • Robert Y. Moore


Experimentally induced lesions of specific parts of the brain have been used extensively in two contexts. The first is in anatomical investigations designed to elucidate the pathways of the CNS with the aid of tract-tracing techniques such as the silver methods (see Chapter 4). Second, experimentally produced brain lesions have also been used widely as a means of studying the functions of specific brain regions: if a certain population of neurons or a pathway is destroyed, there is usually a loss or alteration of the function normally mediated by that structure. The purpose of this chapter is to outline some of the techniques available for experimental production of CNS lesions in animals. It should not be forgotten, however, that analysis of the human brain following spontaneously occurring lesions can also provide valuable information concerning pathways and function.


Locus Coeruleus Kainic Acid Intracerebral Injection Zona Incerta Electrolytic Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


A. Rat Brain Atlases

  1. deGroot, J., 1959, The rat forebrain in stereotaxic coordinates, Tr. R. Neth. Acad. Sci. 52: 1–40.Google Scholar
  2. deGroot, J., 1959, The rat hypothalamus in sterotaxic coordinates, J. Comp. Neurol 113: 389–400.CrossRefGoogle Scholar
  3. Fifkova, E., and Marsala, J., 1960, Stereotaxic adas for the rat, in: Electrophysiological Methods in Biological Research ( J. Bures, N. Petran, and J. Zachar, eds.), pp. 444–453, Academic Press, New York.Google Scholar
  4. Hurt, G. A., Hanaway, J., and Netsky, M. G., 1971, Stereotaxic atlas of the mesencephalon in the albino rat, Confinia Neurologica 33: 93–115.PubMedCrossRefGoogle Scholar
  5. König, J. F. R., and Klippel, R. A., 1963, The Rat Brain—Stereotaxic Atlas, Williams Sc Wilkins, Baltimore.Google Scholar
  6. Pellegrino, L. J., Pellegrino, A. S., and Cushman, A. J., 1979, A Stereotaxic Atlas of the Rat Brain, 2nd edition. Plenum Press, New York.Google Scholar
  7. Sherwood, N. M., and Timiras, P. S., 1970, A Stereotaxic Atlas of the Developing Rat Brain, University of California Press, Berkeley.Google Scholar
  8. Szentagothai, J., 1962, Cytoarchitectonic atlas of the rat brain in Horsley–Clarke coordinates, in: Hypothalamic Control of the Anterior Pituitary, pp. 20–37, Publishing House of the Hungarian Academy of Sciences, Budapest.Google Scholar

B. Cat Brain Atlases

  1. Berman, A. R., 1968, The Brain Stem of the Cat: A Cytoarchitectonic Atlas with Stereotaxic Coordinates, University of Wisconsin Press, Madison.Google Scholar
  2. Bieier, R., 1961, The Hypothalmus of the Cat—A Cytoarchitecture Atlas in Horsley-Clarke Coordinate System, Johns Hopkins University Press, Bakimore.Google Scholar
  3. Fifkova, E., and Marsala, J., 1960, Stereotaxic atlas for the cat, in: Electrophysiological Methods in Biological Research ( J. Bures, N. Petran, and J. Zachar, eds.) pp. 426–43, Academic Press, New York.Google Scholar
  4. Jasper, H. H., and Ajmone-Marsan, C., 1954, A Stereotaxic Atlas of the Diencephalon of the Cat, National Research Council, Ottawa, Canada.Google Scholar
  5. Snider, R. S., and Niemer, W. T., 1961, A Stereotaxic Atlas of the Cat Brain, University of Chicago Press, Chicago.Google Scholar
  6. Verhaart, W. J. C., 1964, Stereotaxic Atlas of the Brain Stem of the Cat, Davis, Philadelphia.Google Scholar

C. Primate Brain Atlases

  1. Davis, R., and Huffman, R. D., 1968, A Stereotaxic Atlas of the Brain of the Baboon (Papio), University of Texas Press, Austin.Google Scholar
  2. Delucchi, M. R., Dennis, B. J., and Adey, W. R., 1965, A Stereotaxic Atlas of the Chimpanzee Brain, University of California Press, Berkeley.Google Scholar
  3. Emmers, R., and Akert, K., 1962, A Stereotaxic Atlas of the Brain of the Squirrel Monkey, University of Wisconsin Press, Madison.Google Scholar
  4. Gergen, J. A., MacLean, P. D., 1962, A Stereotaxic Atlas of the Squirrel Monkeys Brain, U.S. Public Health Service Publication No. 933, Washington.Google Scholar
  5. Kusama, T., and Mabuchi, M., 1970, Stereotaxic Atlas of the Brain of Macaca Fuscata, University Park Press, Baltimore.Google Scholar
  6. Manocha, S., Shantha, T. R., and Bourne, G. H., 1968, A Stereotaxic Atlas of the Brain of the Cebus Monkey (Cebus apella). Clarendon Press, Oxford.Google Scholar
  7. Olszewski, J., 1952, The Thalamus of the Macaca Mulatta, Karger, Basel.Google Scholar
  8. Shantha, T. R., Manocha, S. L., and Bourne, G. H., 1968, A Stereotaxic Atlas of the Java Monkey Brain (Macaca Irus), Williams & Wilkins, Baltimore.Google Scholar

D. Dog Brain Atlases

  1. Dua-Sharma, S., Sharma, S., and Jacobs, H. L., 1970, The Canine Brain in Stereotaxic Coordinates, MIT Press, Cambridge.Google Scholar
  2. Lim, R. K. S., Liu, C., and Moffitt, R., 1960, A Stereotaxic Atlas of the Dogs Brain, Charles C. Thomas, Springfield, Illinois.Google Scholar


  1. Agid, Y., Javoy, F. Glowinski, J., Bouvet, D., and Sotelo, C., 1973, Injection of 6-hydroxydo-pamine into the substantia nigra of the rat. 11. Diffusion and specificity. Brain Res. 58: 291–301.Google Scholar
  2. Aronow, S., 1960, The use of radiofrequency power in making lesions in the brain, J. Neurosurg. 17: 431–438.CrossRefGoogle Scholar
  3. Baumgarten, H. G., and Lachenmayer, I., 1972, 5,7-Dihydroxytryptamine improvement in chemical lesioning of indoleamine neurons in the mammalian brain, Z. Zellforsch. 135: 399–414.Google Scholar
  4. Baumgarten, H. G., Bjorklund, A., Lachenmayer, L, Nobin, A., and Steveni, U., 1971, Long-lasting selective depletion of brain serotonin by 5,6-dihydroxytryptamine, Acta Physiol Scand. [Suppl] 373: 1–15.Google Scholar
  5. Baumgarten, H. G., Bjorklund, A., Nobin, A., Rosengten, T., and Schlossberger, H. G., 1975, Neurotoxicity of hydroxylated tryptamines: Structure-activity relationships. 1. Long-term effects on monoamine content and fluorescence morphology of central monoamine neurons. Acta Physiol. Scand. [SuppL] 429: 1–27.Google Scholar
  6. Biziere, K., and Coyle, J. T., 1978, Influence of cortico-striatal afferents on striatal kainic acid neurotoxicity, Neurosci. Lett. 8: 303–310.PubMedCrossRefGoogle Scholar
  7. Bjorklund, A., Nobin, A., and Stenevi, U., 1973, The use of neurotoxic dihydrotryptamines as tools for morphological studies and localized lesioning of central indolamine neurons, Z. Zellforsch. 145: 479–501.CrossRefGoogle Scholar
  8. Bjorklund, A., Baumgarten, H. G., and Nobin, A., 1974, Chemical lesioning of central monoamine axons by means of 5,6-dihydroxytryptamine and 5,7-dihydroxytryptamine, Adv. Biochem. Psychopharmacol. 10: 13–33.PubMedGoogle Scholar
  9. Bjorklund, A., Horn, A. S., Baumgarten, H. G., Nobin, A., and Schlossberger, H. G., 1975. Neurotoxicity of hydroxlated tryptamines: Structure–activity relationships. 2. In vitro studies on monoamine uptake inhibition and uptake impairment, Acta Physiol. Scand. [Suppl] 429: 29–60.Google Scholar
  10. Bleier, R., 1961, The Hypothalamus of the Cat—A Cytoarchitecture Atlas in Hors leyClarke Coordinate System, Johns Hopkins University Press, Baltimore.Google Scholar
  11. Bloom, F. E., 1975, Monoaminergic neurotoxins: Are they selective? J. Neural Transm. 37: 183–187.PubMedCrossRefGoogle Scholar
  12. Breese, G. R., 1975, Chemical and immunochemical lesions by specific neurotoxic substances and antisera, in: Handbook of Psychopharmacology, Vol. 1 ( L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds.), pp. 137–189, Plenum Press, New York.Google Scholar
  13. Bremer, F., 1935, Cerveau isolé et physiologie du commeil, C. C. Seances Soc. Biol. Paris 118: 1235–1242.Google Scholar
  14. Brodai, A., 1973, Self–observations and neuro-anatomical considerations after a stroke, Brain 96: 675–694.CrossRefGoogle Scholar
  15. Butcher, L. L., 1975, Degenerative processes after punctate intracerbral administration of 6-hydroxydopamine, J. Neural Transm. 37: 189–208.CrossRefGoogle Scholar
  16. Butcher, L. L., Eastgate, S. M., and Hodge, G. K. 1974, Evidence that punctate intracerebral administration of 6-hydroxydopamine fails to produce selective neuronal degeneration, Naunyn-Schmiedebergs Arch. Pharmacol. 285: 31–70.PubMedCrossRefGoogle Scholar
  17. Butcher, L. L., Hodge, G. K., and Schaffer, J. C., 1975, Degenerative processes after intraventricular infusion of 6-hydroxydopamine, in: Chemical Tools in Monoamine Research (G. Jonsson, T. Malmfors, and C. Sachs, eds.), EIsevier /North Holland, Amsterdam.Google Scholar
  18. Campochiaro, P., and Coyle, J. T., 1978, Ontogenetic development of kainate neurotoxicity: Correlates with glutamatergic innervation., Proc. Natl. Acad. Sci. USA. 75: 2025–2029.PubMedCrossRefGoogle Scholar
  19. Carpenter, M. B., and Whittier, J. R., 1952, Study of methods for producing experimental lesions in the central nervous system with special reference to stereotaxic technique, J. Comp. Neurol. 97: 73–132.PubMedCrossRefGoogle Scholar
  20. Clarke, R. H., 1920, Investigation of the Central Nervous System, Johns Hopkins Hospital Reports, Special Vol. 1, pp. 1–160, Lord Baltimore Press, Baltimore.Google Scholar
  21. Cooper, J. S., 1962, A cryogenic method for physiologic inhibition and production of lesions in the brain, J. Neurosurg. 19: 853–855.CrossRefGoogle Scholar
  22. Cox, T. R., Gisi, J. M., and Wolf, G., 1978, Deposit–free electrolytic brain lesions: Méthodologie and histologic observations, Physiol. Behav. 18: 967–973.Google Scholar
  23. Coyle, J. T., and Schwarcz, R., 1976, Model for Huntington’s chorea: Lesion of striatal neurons with kainic acid. Nature 263: 244–246.PubMedCrossRefGoogle Scholar
  24. Coyle, J. T., Molliver, M. E., and Kuhar, M. J., 1978, In situ injection of kainic acid: A new method for selectively lesioning neuronal cell bodies while sparing axons of passage, J. Comp. Neurol. 180: 301–323.Google Scholar
  25. de Champlain, J., and Nadeau, R., 1971, 6–hydroxydopamine, 6–hydroxydopa and degeneration of adrenergic nerves, Fed. Proc. 39: 877–885.Google Scholar
  26. De Groot, J., 1959, the rat hypothalamus in stereotaxic coordinates, J. Comp. Neurol. 113: 389–400.Google Scholar
  27. Descarries, L., and Saucier, G., 1972, Disappearance of the locus coeruleus of the rat after intraventricular 6-hydroxydopamine, Brain Res. 37: 310–316.PubMedCrossRefGoogle Scholar
  28. Dixon, R. G., Riley, J. N., and Marchand, E. R., 1978, Simple template method for targeting brain loci in small animal stereotaxy, Brain Res. Bull. 3: 721–722.PubMedCrossRefGoogle Scholar
  29. Fry, F. J., and Cowan, W. M., 1972, A study of retrograde cell degeneration in the lateral mammillary nucleus of the cat, with special reference to the role of axonal branching in the preservation of the cell, J. Com. Neurol. 144: 1–24.CrossRefGoogle Scholar
  30. Fry, W. J., Fry, F. J., Malck, R., and Paukau, J. W., 1964, Quantitative neuroanatomic studies implemented by ultrasonic lesions—Mammillary nuclei and associated complex of cat brain, J. Acoust. Soc. Am. 36: 1795–1835.CrossRefGoogle Scholar
  31. Gold R. M., 1975, Anodal electrolytic brain lesions: How current and electrode mental influence lesion size and hyperphagiosity, Physiol. 14: 624–632.Google Scholar
  32. Gold, R. M., Kapatos, G., and Carey, R. J., 1973, A retracting wire knife for stereotaxic brain surgery made from a microliter syxmgt, Physiol. Behav. 10: 813–815.CrossRefGoogle Scholar
  33. Goldberg, J. M., and Moore, R. Y., 1967, Ascending projections of the lateral lemniscus in the cat and monkey, J. Comp. Neurol. 129: 143–156.CrossRefGoogle Scholar
  34. Groeneweger, H. J., and Voogd, Y., 1977, The parasagittal zonation within the olivocerebellar projection. 1. Climbing fiber distribution in the vermis of cat cerebellum, J. Comp. Neurol. 174: 417–488.CrossRefGoogle Scholar
  35. Halaris, A. E., Jones, B. E., and Moore, R. Y., 1976, Axonal transport in serotonin neurons of the midbrain raphe. Brain Res. 107: 555–574.PubMedCrossRefGoogle Scholar
  36. Halasz, B., 1969, The endocrine effects of isolation of the hypothalamus from the rest of the brain, in: Frontiers in Neuroendocrinology ( W. F. Ganong and L. Martini, eds.), pp. 307–342, Oxford University Press, New York.Google Scholar
  37. Halasz, B., and Pupp, L., 1965, Hormone secretion of the anterior pituitary gland after physical interruption of all nervous pathways to the hypophysiotrophic area. Endocrinology 77: 553–562.PubMedCrossRefGoogle Scholar
  38. Hattori, T., and McGeer, E. O., 1977, Fine structural changes in the rat striatum after local injections of kainic acid. Brain Res. 129: 174–180.PubMedCrossRefGoogle Scholar
  39. Hedreen, J. C., and Chalmers, J. P., 1972, Neuronal degeneration in rat brain induced by 6-hydroxydopamine: A histological and biochemical study, Brain Res. 47: 1–36.PubMedCrossRefGoogle Scholar
  40. Herndon, R., and Coyle, J. T., 1977, Selective destruction of neurons by a transmitter agonist. Science 198: 71–72.PubMedCrossRefGoogle Scholar
  41. Hökfelt, T., and Ungerstedt, U., 1973, Specificity of 6-hydroxydropamine-induced degeneration of central monoamine neurons: An electron and fluorescence microscopic study with special references to intracerebral injection on the nigrostriatal dopamine system. Brain Res. 60: 269–297.PubMedCrossRefGoogle Scholar
  42. Horsley, V., and Clarke, R. H., 1908, The structure and functions of the cerebellum examined by a new method, Brain 31: 45–124.CrossRefGoogle Scholar
  43. Hurt, G. A., Hanaway, J., and Netsky, M. A., 1971, Stereotaxic atlas of the midbrain of the albino rat, Confin. Neurol. 33: 93–115.PubMedCrossRefGoogle Scholar
  44. Jacobowitz, D., and Kostrzewa, R., 1971, Selective action of 6–hydroxydopa on noradrenergic terminals: Mapping of preterminal axon of the brain, Life Sci. 10: 1329–1342.CrossRefGoogle Scholar
  45. Javoy, F., 1975, Partial selectivity of 6-OHDA induced neuronal degeneration after intratissular injection in the brain with special reference to the nigro-striatal dopamine system, J. Neural Transm. 37: 219–227.CrossRefGoogle Scholar
  46. Jonsson, G., Pycock, C., Fuxe, K., and Sachs, C., 1974, Changes in the development of central noradrenaline neurons following neonatal administration of 6-hydroxydopamine, Neurochem. 22: 419–426.CrossRefGoogle Scholar
  47. Knook, H. L., 1969, Stereotaxic lesioning with micro-electrodes, Psychiatr. Neurol Neurochir. 72: 61–64.PubMedGoogle Scholar
  48. Kostrzewa, R. M., and Jacobowitz, D. M., 1974, Pharmacological actions of 6-hydroxydopamine, Pharmacol. Rev. 26: 199–288.PubMedGoogle Scholar
  49. Malis, L. I., Beaker, C. P., Kruger, L., and Rose, J. E., 1960, Effects of heavy ionizing mono-energetic particles on cerebral cortex. I. Production of laminar lesions and dosimetric considerations, J. Comp. Neurol. 115: 219–242.CrossRefGoogle Scholar
  50. Marchand, E. R., and Riley, J. N., 1979, A self-centering head holder system for small animal stereotaxy, Res. Bull. 4: 141–143.CrossRefGoogle Scholar
  51. Mason, S. T., and Fibiger, H. C., 1979, On the specificity of kainic acid, Science 204: 1339–1341.PubMedCrossRefGoogle Scholar
  52. McGeer, E. G., and McGeer, P. L., 1976, Duplication of biochemical changes of Huntington’s chorea by intrastriatal injections of glutamic and kainic acid. Nature 263: 517–519.PubMedCrossRefGoogle Scholar
  53. McGeer, E. G., Olney, J. W., and McGeer, P. L., 1978a, Kainic Acid as a Tool in Neurobiology, Raven Press, New York.Google Scholar
  54. McGeer, P. L., McGeer, E. G., and Hattori, T., 1978b, Kainic acid as a tool in neurobiology, in: Kainic Acid as a Tool in Neurobiology (E. G. McGeer, J. W. Olney, and P. L. McGeer, eds.) pp. 123–138, Raven Press, New York.Google Scholar
  55. Moore, R. Y., 1964, The effect of some rhinencephalic lesions on retention of a conditioned avoidance response in the cat, J. Comp. Physiol. Psychol. 57: 65–71.CrossRefGoogle Scholar
  56. Moore, R. Y., 1978, Surgical and chemical lesion techniques, in: Handbook of Psychopharmacology, Vol. IX ( L. Iversen, S. Iversen, and S. H. Snyder, eds.) pp. 1–39, Plenum Press, New York.Google Scholar
  57. Moore, R. Y., Halaris, A. E., and Jones, B. E., 1978, Serotonin neurons of the midbrain raphe: Ascending projections, J. Comp. Neurol. 180: 417–438.CrossRefGoogle Scholar
  58. Mullan, S., Harper, P. V., Tani, E., Vailata, G., and Lathrop, K. A., 1963, A nuclear needle for use in neurosurgery, J. Neurosurg. 20: 940–947.CrossRefGoogle Scholar
  59. Myers, R. E., 1956, Function of the corpus callosum in interocular transfer, Brain 79: 358–363.PubMedCrossRefGoogle Scholar
  60. Nadler, J. V., Perry, B. W., and Cotman, C. W., 1978, Preferential vulnerability of hippocampus to intraventricular kainic acid, in: Kainic Acid as a Tool in Neurobiology ( E. G. McGeer, J. W. Olney, and P. L. McGeer, eds.), pp. 219–238, Raven Press, New York.Google Scholar
  61. Olney, J. W., 1969a, Glutamate–induced retinal degeneration in neonatal mice. Electron microscopy of the evolving lesion, J. NeuropathoL Exp. Neurol. 28: 455–474.CrossRefGoogle Scholar
  62. Olney, J. W., 1969b, Brain lesions, obesity and other disturbances in mice treated with mono-sodium glutamate, Science 164: 719.PubMedCrossRefGoogle Scholar
  63. Olney, J. W., Rhee, V., and Ho, O. L., 1974, Kainic acid: A powerful neurotoxic analogue of glutamate. Brain Res. 77: 507–512.PubMedCrossRefGoogle Scholar
  64. Olszewski, J., 1952, The Thalamus of the Macaca mulatta, Karger, Basel.Google Scholar
  65. Pandya, D. N., Karol, E. A., and Lele, P. P., 1973, The distribution of the anterior commissure in the squirrel monkey, Brain Res. 49: 177–180.PubMedCrossRefGoogle Scholar
  66. Peterson, G. M., and Moore, R. Y., 1980, Selective effects of kainic acid on diencephalic neurons, Brain Res. 202: 165–182.Google Scholar
  67. Poirier, L. H., 1975, Histopathological changes associated with the intracerebral injection of 6-hydroxydopamine (6-OH-DA) and peroxide (HgOg) in the cat and rat, J. Neurol. Transm. 37: 209–218.CrossRefGoogle Scholar
  68. Poirier, L. H., Langelier, P., Roberge, A., Boucher, R., and Kitsikis, A., 1972, Non-specific histopathological changes induced by the intracerebral injection of 6-hydroxydopamine (6-OH-DA), J Neurol. Sci. 16: 401–416.PubMedCrossRefGoogle Scholar
  69. Purpura, D. P., and Gonzalez-Monteagudo, O., 1960, Acute effects of methoxypyridine on hip-pocampal and blade neurons: An experimental study of “special pathoclisis” in the cerebral cortex, J. NeuropathoL Exp. Neurol. 19: 421–431.CrossRefGoogle Scholar
  70. Richardson, J. S., and Jacobowitz, D., 1973, Depletion of brain norepinephrine by intraventricular injection of 6-hydroxydopa: A biochemical, histochemical and behavioral study in rats. Brain Res 58: 17–133.CrossRefGoogle Scholar
  71. Richter, R. B., 1945, Degeneration of the basal ganglia in monkeys from chronic carbon disulfide poisoning, J. NeuropathoL Exp. NeuroL 4: 324–353.CrossRefGoogle Scholar
  72. Robinson, R. G., Shoemaker, W. J., Schlumpf, M., Valk, T., and Bloom, F., 1975, Effect of experimental cerebral infarction in rat brain on catecholamines and behavior, Nature 255: 332.PubMedCrossRefGoogle Scholar
  73. Rose, J. E., and Woolsey, G. N., 1943, A study of the thalamocortical connections in the rabbit, Bull Johns Hopkins Hosp. 73: 65–128.Google Scholar
  74. Rose, J. E., and Woolsey, G. N., 1949, The relations of thalamic connections, cellular structure and evocable electrical activity in the auditory region of the cat, J. Comp. NeuroL 91: 441–466.CrossRefGoogle Scholar
  75. Routtenberg, A., 1972, Intracranial injection and behavior: A critical review, Behav. BioL 7: 601–641.PubMedCrossRefGoogle Scholar
  76. Rowland, V., 1966, Stereotaxic techniques and the production of lesions, in: Neuroendocrinology, VoL 1 ( L. Martini and W. F. Ganong, eds.), pp. 107–132, Academic Press, New York.Google Scholar
  77. Sachs, G., 1973, Development of the blood-brain barrier for 6-hydroxydopamine, J. Neurochem. 19: 1561–1575.CrossRefGoogle Scholar
  78. Sachs, G., and Jonsson, G., 1975, Mechanisms of action of 6-hydroxydopamine, Biochem. Pharmacol 24: 1–8.PubMedCrossRefGoogle Scholar
  79. Sachs, G., Jonsson, G., and Fuxe, K., 1973, Mapping of central noradrenaline pathways with 6-hydroxyl-dopa, Res. 63: 249–261.Google Scholar
  80. Schneider, G. E., 1970, Mechanisms of functional recovery following lesions of visual cortex or superior colliculus in neonate and adult hamster. Brain Behav. Evol 3: 295–323.PubMedCrossRefGoogle Scholar
  81. Schoenfeld, T. A., and Hamilton, L. W., 1977, Secondary brain changes following lesions: A new paradigm for lesion experimentation, Behav. 18: 951–957.Google Scholar
  82. Schulman, S., 1964, Impaired delayed response from thalamic lesions. Arch. NeuroL 11: 477–499.PubMedCrossRefGoogle Scholar
  83. Schwarcz, R., and Goyle, J. T., 1977, Striatal lesions with kainic acid: Neurochemical characteristics, Brain Res. 127: 235–249.PubMedCrossRefGoogle Scholar
  84. Schwarcz, R., Scholz, D., and Goyle, J. T., 1978, Structure-activity relations for the neurotoxicity of kainic acid derivatives and glutamate analogues. Neuropharmacology 17: 145–151.PubMedCrossRefGoogle Scholar
  85. Sdafini, A., and Grossman, S. P., 1969, Hyperphagia produced by knife-cuts between the medial and lateral hypothalamus in the rat, Physiol Behav. 4: 533–539.CrossRefGoogle Scholar
  86. Simon, H., Le Moal, M., Galey, D., and Cardo, B., 1974, Selective degeneration of central dopaminergic systems after injection of 6-hydroxydopamine in the ventral mesencephalic tegmentum of the rat: Demonstration by the Fink-Heimer stain, Exp. Brain Res. 20: 375–384.PubMedCrossRefGoogle Scholar
  87. Singh, B., and De Champlain, J., 1972, Altered ontogenesis of central noradrenergic neurons following neonatal treatment with 6-hydroxydopamine, Brain Res. 48: 432–437.PubMedCrossRefGoogle Scholar
  88. Sotelo, C., Javoy, F., Agid, Y., and Glowinski, J., 1973, Injection of 6-hydroxydopamine in the substantia nigra of the rat. 1. Morphological study. Brain Res. 58: 269–290.PubMedCrossRefGoogle Scholar
  89. Stahl, S. M., Daniels, A. C., Derda, D., and Spehlmann, R., 1975, Injection of 6-hydroxydopamine and hydrogen peroxide into the substantia nigra and lateral ventricle of the cat: Specific and nonspecific effects on striatal amines, J. Neurochem. 24: 165–172.CrossRefGoogle Scholar
  90. Ungerstedt, U., 1971, Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol. Scand. 82 (Suppl. 367 ): 1–48.Google Scholar
  91. Velasco, M. E., 1972, Opposite effects of platinum and stainless-steel lesions of the amygdala on gonadotrophin secretion, Neuroendocrinology 10: 301–308.PubMedCrossRefGoogle Scholar
  92. Voloschin, L., Joseph, S. A., and Knigge, K. M., 1968, Endocrine function in male rats following complete and partial isolations of the hypothalamo-pituitary unit, Neuroendocrinology 3: 387–397.PubMedCrossRefGoogle Scholar
  93. Walker, A. E., 1938, The Primate Thalamus, University of Chicago Press, Chicago.Google Scholar
  94. Whishaw, T. Q., Cioè, J. D. D., Previsich, N., and Kolb, B., 1977, The variability of the interaural line vs. the stability of bregma in rat stereotaxic surgery, Physiol. Behav. 19: 719–722.CrossRefGoogle Scholar
  95. Wolf, G., and DiCara, L. V., 1969, Progressive morphologic changes in electrolytic brain lesions, Exp. Neurol. 23: 529–537.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Robert Y. Moore
    • 1
  1. 1.Department of NeurologyState University of New York at Stony BrookStony BrookUSA

Personalised recommendations