The Structure and Mechanical Properties of Blends of Cis and Trans-Polyisoprene

  • A. J. Carter
  • C. K. L. Davies
  • A. G. Thomas

Abstract

A series of blends of cis/trans-polyisoprene (0–100%) show a single glass transition temperature and are compatible at all compositions. The crystallinity decreasing linearly with crystallizable trans content. All the blends show impinged spherulites even at crystallinities of 1 to 2%. The spherulite growth rate decreases as the non-crystallizable content of the blends increases. TEM observations show that the crystals within spherulites become more branched and dentrite like at low crystallinities; fibrils of crystals are seen larger non-crystalline spacings between the fibrils. The lamellar crystal thickness changes only slowly with crystallinity. The long period increases with decreasing crystallinity in the manner suggested by the TEM observations. The tensile modulus decreases with crystallinity and attempts have been made to describe the change with simple reinforcement theory.

Keywords

Nickel Crystallization Rubber Phenylene Polystyrene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. D. Keith and F. J. Padden, J. Appi. Phys., 35, 1270 and 1286 (1964).CrossRefGoogle Scholar
  2. 2.
    G. S. Y. Yeh and S. L. Lambert, J. Polym. Sci.A-2, 10, 1183, (1972).CrossRefGoogle Scholar
  3. 3.
    L. M. Robeson, J. Appi. Polym. Sci., 17, 3607 (1973).CrossRefGoogle Scholar
  4. 4.
    T. T. Wang and T. Nishi, Macromolecules, 10, 421 (1977).CrossRefGoogle Scholar
  5. 5.
    W. Wenig, F. E. Karasz and W. J. MacKnight, J. Appi. Phys., 46, 4194 (1975).CrossRefGoogle Scholar
  6. 6.
    F. H. Khambatta, F. P. Warner, T. Russel and R. S. Stein, J. Polym. Sci.A-2, 14, 1391 (1976).Google Scholar
  7. 7.
    F. P. Warner, W. MacKnight and R. S. Stein, J. Polym. Sci., Pol. Phys., 15, 2113 (1977).CrossRefGoogle Scholar
  8. 8.
    C. K. L. Davies and E. L. Ong, J. Mat. Sci., 12, 2165 (1977).CrossRefGoogle Scholar
  9. 9.
    C. K. L. Davies and E. L. Ong, J. Mat. Sci., to. be published.Google Scholar
  10. 10.
    B. E. Reed and G. D. Dean, Plastics and Rubber Materials Applications, 1 (1976).Google Scholar
  11. 11.
    C. G. Vonk, J. Appi. Cryst., 8, 340 (1975).CrossRefGoogle Scholar
  12. 12.
    B. Crist and N. Morosoff, J. Polym. Sci. Pol. Phys.Ed. 11, 1023 (1973).Google Scholar
  13. 13.
    D. Fisher, Proc. Phys. Soc., B66, 7 (1953).CrossRefGoogle Scholar
  14. 14.
    G. Kortleve and C. G. Vonk, Kolloid Z.Z. Polym., 225 (1968).Google Scholar
  15. 15.
    C. G. Vonk, Private communication.Google Scholar
  16. 16.
    J. I. Lauritzen Jr. and J. D. Hoffman, J. Appi. Phys., 44, 4340 (1973).CrossRefGoogle Scholar
  17. 17.
    M. L. Williams, R. F. Landel and J.D. Ferry, J. Am Chem. Soc., 77., 3701 (1955).CrossRefGoogle Scholar
  18. 18.
    M. C. M. Cucarella and C. K. L. Davies, to be published in J. Mat. Sci.Google Scholar
  19. 19.
    H. A. Flocke, Kolloid Seit, 180, 118 (1962).CrossRefGoogle Scholar
  20. 20.
    J. C. Halpin and J. L. Kardos, J. Appi. Phys., 43, 2235 (1972).CrossRefGoogle Scholar
  21. 21.
    G. Avitabile, R. Napolitano and F. Riva, J. Polym. Sci. Phys., 16, 1983 (1978).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • A. J. Carter
    • 1
  • C. K. L. Davies
    • 1
  • A. G. Thomas
    • 2
  1. 1.Materials Department, Queen Mary CollegeUniversity of LondonUK
  2. 2.MRPRAHertfordUK

Personalised recommendations