Polymer Blends pp 239-264 | Cite as

Mechanical Models of Heterogeneous Polymeric Materials

  • T. Pakula


The theoretical description of mechanical properties of heterogeneous materials has been a subject of investigation of several authors in last few years. The interest in this field is involved by technological importance of composite polymeric materials like polymer blends, filled polymers and block copolymers. Blending of polymers is usually used to improve properties and processability of materials. On the other hand most of polymers that are considered to be chemically homogeneous become physically heterogeneous when considered on a microscopic scale. An example is the coexistence of crystalline and amorphous regions in most crystallizing polymers.


Block Copolymer Unit Element Transverse Isotropy Aggregate Model Viscoelastic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. C. Chamis and G. P. Sendecky, J. Compos. Mat., 2, 332 (1968).CrossRefGoogle Scholar
  2. 2.
    M. Takayanagi, H. Harima and Y. Iwata, Mem. Fac. Engng., Kyushu Univ., 23, 1 (1963).Google Scholar
  3. 3.
    R. Hill, J. Mech. Phys. Solids, 12, 199 (1964).CrossRefGoogle Scholar
  4. 4.
    L. J. Walpole, J. Mech. Phys. Solids, 17, 235 (1969).CrossRefGoogle Scholar
  5. 5.
    Z. Hashin, J. Mech. Phys. Solids, 13, 119 (1965).CrossRefGoogle Scholar
  6. 6.
    R. Hill, J. Mech. Phys. Solids, 13, 189 (1965).CrossRefGoogle Scholar
  7. 7.
    G. A. Van Fofy and G. N. Savin, Mechanika Polimerov, 1, 131, (1963).Google Scholar
  8. 8.
    C. H. Chen and S. Cheng, J. Compos. Mat., 1, 30 (1967).Google Scholar
  9. 9.
    T. Pakula and M. Kryszewski, Plaste u.Kautschuk, 24, 761 (1977)Google Scholar
  10. 9a.
    T. Pakula, paper submitted for publication.Google Scholar
  11. 10.
    H. Handus, K. Illers and E. Ropte, Kolloid Z.U.Z. Polymere, 216, 110 (1967).CrossRefGoogle Scholar
  12. 11).
    M. Matsuo, Japan Plast., 2, 6 (1968).Google Scholar
  13. 12).
    A. Keller, E. Pedemonte and F.M. Willmouth, Nature, 225, 538 (1970).CrossRefGoogle Scholar
  14. 13).
    J. Dlugosz, A. Keller and E. Pedemonte, Kolloid Z.U.Z. Polymere, 242, 1125 (1970).CrossRefGoogle Scholar
  15. 14).
    T. Pakula, J. Grebowicz and M. Kryszewski, paper presented on Discussion Conference on V° Phases and Interphases in Macromolecular Systems, Prag 1976.Google Scholar
  16. 15).
    R. S. Stein, F. B. Khambatta, F. P. Warner, T. Russel, A. Escula and E. Balizer, J. Polym. Sci. Polym. Symp., 63, 313 (1978).CrossRefGoogle Scholar
  17. 16).
    C. J. Ong and F. P. Price, J. Polym. Sci. Polym. Symp., 63, 45 (1978).CrossRefGoogle Scholar
  18. 17).
    W. Wenig, F. E. Karasz and W. J. MacKnight, J. Appi. Phys., 46, 4194 (1975).CrossRefGoogle Scholar
  19. 18).
    B. Paul, Trans. AIME, 218, 36 (1960).Google Scholar
  20. 19).
    T. Okamoto and M. Takayanagi, J. Polym. Sci., C23, 597 (1968).Google Scholar
  21. 20).
    E.H. Kerner, Proc. Phys. Soc., 69B, 808 (1956).CrossRefGoogle Scholar
  22. 21).
    R. A. Dickie, J. Appi. Polym. Sci., 17, 45 (1973).CrossRefGoogle Scholar
  23. 22).
    D. Kaplin and N. W. Tschoegl, Polym. Ing. Sci., 14, 43 (1974).CrossRefGoogle Scholar
  24. 23).
    S. P. Hersh, J. Appi. Polym. Sci. Appi. Polym. Symp., 31, 37 (1977).Google Scholar
  25. 24).
    T. Pakula, M. Kryszewski, J. Grebowicz and A. Galeski, Polymer J., 6, 94 (1974).CrossRefGoogle Scholar
  26. 25).
    I. M. Ward, “Mechanical Properties of Solid Polymers”, Wiley Interscience, (Ch. 10 ), 1971.Google Scholar
  27. 26).
    G. Locati, unpublished results.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • T. Pakula
    • 1
  1. 1.Centre of Molecular and Macromolecular StudiesPolish Academy of SciencesLodzPoland

Personalised recommendations