Ultrafiltration in Patients with Endstage Renal Disease

  • Juan P. Bosch
  • Robert Geronemus
  • Sheldon Glabman
  • George Moutoussis
  • Thomas Kahn
  • Beat von Albertini
Part of the Polymer Science and Technology book series (POLS, volume 13)


For the past 15 years maintenance hemodialysis has been the main technique utilized in the treatment of end-stage kidney disease. It has been successful in maintaining life in patients whose outlook was completely hopeless. Even if transplantation offers an attractive alternative, hemodialysis has remained the single most important treatment modality. More widespread use is limited only the technical complexity and the considerable economical impact of the procedure. Hemodialysis maintains patients with end-stage renal disease by replacing, to a certain extent at least, the excretory function of the failing kidneys. Considerable technical progress has been made over the years to improve this function. Despite the improved efficiency and design of the dialysis apparatus, body composition remains deranged. It has been demonstrated that the size of the various fluid compartments are often abnormal, and plasma levels of a number of small molecular weight compounds remain above normal values (1–4). Moreover, there is evidence that large molecular weight substances normally excreted by the kidneys are incompletely cleared from the body, even by the most efficient dialysis apparatus (5–7). Furthermore, all of the clinical manifestations of renal failure are not caused by the retention in the body of substances which are normally excreted by the kidneys (8).


Ultrafiltration Rate Plasma Bicarbonate Hydrostatic Pressure Gradient Regular Dialysis ENDSTAGE Renal Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coles, G.A.: Body composition in chronic renal failure. QJ Mad, 41, 161: 25, 1972.Google Scholar
  2. 2.
    Giovanetti, S., and Maggiore, Q.: A low-nitrogen diet with proteins of high biological value for severe chronic uremia. Lancet 1: 1000, 1964.CrossRefGoogle Scholar
  3. 3.
    Franklin, S.S., Gordon, A., Kleeman, C.R. and Maxwell, M.H.: Use of a balanced low-protein diet in chronic renal failure: JAMA 202: 477, 1967.CrossRefGoogle Scholar
  4. 4.
    Kerr, D., Robson, A., Eliott, R.W. and Asheroft, R.: Diet in chronic renal failure. Proc. Roy. Soc. Med. 60: 115, 1967.Google Scholar
  5. 5.
    Gordon, A., Berstrflm, J., Ftirst, P., and Zimmerman, L: Separation and characterization of uremic metabolites in biologic fluids. A screening approach to the definition of uremic toxins. Kidney Int. 7: S45, 1975.CrossRefGoogle Scholar
  6. 6.
    Babb, A.L., Popvitch, R.P., Christopher, T.G. and Scribner, B.H.: The genesis of the square-meter hour hypothesis. Trans. Am. Soc. Artif. Intern Organs 17: 81, 1971.Google Scholar
  7. 7.
    Scribner, B.H., Babb, A.L.: Evidence for toxins of “middle” molecular weight. Kidney Int. 7 (suppl 2): 349, 1975.Google Scholar
  8. 8.
    Teschan, P.E.: On the pathogenesis of uremia. Am. J. Med. 48: 671, 1970.CrossRefGoogle Scholar
  9. 9.
    Kim, K.E., Neff, M., Cohen, B., Scmerstein, Chinitz, J., Cnesti, G., and Swartz: Blood volume changes and hypotension during hemodialysis. Trans. Am. Soc. Artif. Intern. Organs, 16: 508, 1970.Google Scholar
  10. 10.
    Stewart, W.K., Fleming, L.W., and Mannel, M.A.: Muscle cramps during maintenance hemodialysis. Lancet 1: 1049, 1972.CrossRefGoogle Scholar
  11. 11.
    Wakim, K.G.: The pathophysiology of the dialysis disequilibrium syndrome. Mayo Clin. Proc. 44: 406, 1969.Google Scholar
  12. 12.
    Cerra, F.B., Anthone, R., and Anthone, S.: Colloid osmotic pressure fluctuations and the disequilibrium syndrome during hemodialysis. Nephron 13: 245, 1974.CrossRefGoogle Scholar
  13. 13.
    Arieff, A.L., Massry, S.G., Barrientos, A. and Kleeman, C.R.: Brain water and electrolyte metabolism in uremia: effects of slew and rapid hemodialysis. Kidney Int. 4: 177, 1973.CrossRefGoogle Scholar
  14. 14.
    Bischel, M.D., Scoles R.G. and Mohler, M.D.: Evidence for pulmonary microemboli during hemodialysis. Trans. Am. Soc. Artif. Intern. Organs 19: 492, 1973.Google Scholar
  15. 15.
    Hurwitz, S., Milne, J., Goldman, H.L.: Blood gas abnormalities in patients on chronic hemodialysis. Abstract Nephron 13: 266, 1974.Google Scholar
  16. 16.
    von Albertini, B., Kirpalani, A., Goldstein, M., Glabman, S., and Bosch, J.: Changes in pC02 during and after hemodialysis. Proc. Clin. Dialysis Transpl. Forum 6, 1977.Google Scholar
  17. 17.
    Nolph, K.D.: Short Dialysis, Middle Molecules and Uremia. Ann. Intern. Med. 86: 93, 1977.Google Scholar
  18. 18.
    Henderson, L.W., Silverstein, M.E., Ford, C.A. and Lysaght, J.L.: Clinical response to maintenance henofiltration. Kidney Int. 7: 6 - 58, 1975.Google Scholar
  19. 19.
    Rosenzweig, J., Babb, A.L., Vizzo, J.E., Scribner, B.H., and Ginn, H.E.: Larger Surface area hemodialysis. Proc. Dialysis Transpl. Forum. 1: 56, 1971.Google Scholar
  20. 20.
    Henderson, L.W.: Peritoneal Ultrafiltration Dialysis: Enhanced urea transport using hypertonic peritoneal dialysis fluid. J. Clin. Invest. 45: 960, 1966.CrossRefGoogle Scholar
  21. 21.
    Henderson, L.W., Besarab, A., Michaelis, A., Bluemle, Jr., L.W.: Blood purification by ultrafiltration and fluid replacement (diafiltration) Trans. Amer. Soc. Artif. Organs. 13: 2116, 1967.Google Scholar
  22. 22.
    Henderson, L.W., Colton, C.K. and Ford, C.A.: Kinetics of hemofiltration. II. Clinical characterization of a new blood cleansing modality. J. Lab. Clin. Med. 85: 372, 1975.Google Scholar
  23. 23.
    Colton, C.K., Henderson, L.W. and Ford, C.A., et al.: Kinetics of hemodiafiltration I. In vitro transport characteristics of a hollow-fiber blood ultrafilter. J. Lab. Clin. Med. 85: 355, 1975.Google Scholar
  24. 24.
    Quellhorst, E., Scheler, F., et al.: Arbeitstagung ueber Haemofiltration, Braunlage/Harz. Wissenschaftl. Inform. Fresenius Stiftung 4: 85, 1976.Google Scholar
  25. 25.
    Quellhorst, E., Schnenemann, B. and Borghardt, J.: Clinical and technical aspects of hemofiltration. Artif. Organs. II. 4: 334, 1978.Google Scholar
  26. 26.
    Schaefer, K., V. Herrath, D., Gullberg, C. et al.: Chronic Hemof iltration. Artif. Organs. II, 4: 386, 1978.Google Scholar
  27. 27.
    Kopp. K.F.: Hemof iltration (Editorial). Nephron 20: 65, 1978.CrossRefGoogle Scholar
  28. 28.
    Bergström, J-, Asaba, H., Fürst, P. and Oueles: Dialysis, ultrafiltration and blood pressure. Proc. Europ. Dial. Transpl. Assoc. 13: 293, 1976.Google Scholar
  29. 29.
    Asaba, H., Bergströn, J., Fürst, P., Lindh, K., Mion, R., Queles, R., and Shaldon, S.: Sequential ultrafiltration and diffusion as an alternative to conventional dialysis. Clin. Dial. Transpl. Forum. VI: 129, 1976.Google Scholar
  30. 30.
    Geronemus, R., von Albertini, B., Glabman, S. et al: Enhanced small molecular clearance in hemof iltration. Proc. Clin. Dial. Transpl. Form. VIII: 147, 1978.Google Scholar
  31. 31.
    Bosch, J., Geronemus, R., von Albert ini, B. et al.: Urea kinetics in hemodialysis, hemofiltration and sequential ultrafiltration and dialysis. Proc. Clin. Dial. Transpl. Forum. VIII: 142, 1978.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Juan P. Bosch
    • 1
  • Robert Geronemus
    • 1
  • Sheldon Glabman
    • 1
  • George Moutoussis
    • 1
  • Thomas Kahn
    • 1
  • Beat von Albertini
    • 1
  1. 1.Renal Division of the Department of MedicineMount Sinai School of Medicine of the City University of New YorkN.Y.USA

Personalised recommendations