Advertisement

Thermal Stress Fracture in Elastic-Brittle Materials

  • A. F. Emery

Abstract

The uncoupled thermoelastic brittle fracture problem is discussed in terms of the types of stress fields produced by surface heating or cooling and the generic characteristics of the thermally generated stress intensity factors. Examples of experimental measurements and numerical calculations are given to demonstrate these general characteristics.

Keywords

Heat Transfer Coefficient Thermal Stress Stress Intensity Factor Edge Crack Biot Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. A. Boley and J. H. Weiner,”Theory of Thermal Stresses” John Wiley and Sons, New York, 1960zbMATHGoogle Scholar
  2. 2.
    W. Nowacki, “Thermoelasticity” Pergamon Press, London 1962Google Scholar
  3. 3.
    D. J. Johns, “Thermal Stress Analysis” Pergamon Press, London, 1965Google Scholar
  4. 4.
    Journal of Thermal Stresses, Hemisphere Publ. Washington DCGoogle Scholar
  5. 5.
    A. F. Emery, A. S. Kobayashi and C. F. Barrett, Thermal Stresses in Partially Filled Annuli, SESA J, 6: 602, 1966Google Scholar
  6. 6.
    A. F. Emery and A. S. Kobayashi, The Transient Stress Intensity Factor for Edge and Corner Cracks in Quench Test Specimens, to appear Am. Ceramics J.Google Scholar
  7. 7.
    Experimental Techniques in Fracture Mechanics, vol 1, A. S. Kobayashi, ed. Soc Exp Stress Anal. Westport, 1973Google Scholar
  8. 8.
    G. C. Sih, On the Singular Character of Thermal Stresses Near a Crack Tip, Trans ASME, J. Appl Mech, 29: 587, 1962zbMATHGoogle Scholar
  9. 9.
    A. F. Emery, P. K. Neighbors, A. S. Kobayashi and W. J. Love Stress Intensity Factors in Edge Cracked Plates Subjected to Transient Thermal Singularities, Trans ASME, J. Press Yes Tech, 99; 100, 1977CrossRefGoogle Scholar
  10. 10.
    S. B. Batdorf and H. L. Heinisch, Jr., Fracture Statistics of Brittle Materials with Surface Cracks, Rept. UCLA- ENG-7703, Univ. of Calif, at Los Angeles, 1977Google Scholar
  11. 11.
    S. B. Batdorf and J. G. Crose, A Statistical Theory for the Fracture of Brittle Structures Subjected to Nonuniform Polyaxial Stresses, Trans ASME, J Appl Mech, 41: 459, 1964CrossRefGoogle Scholar
  12. 12.
    A. F. Emery, F. J. Cupps and P. K. Neighbors, The Use of A. F. EMERY Singularity Programming in Finite Element Calculations of Elastic Stress Intensity Factors, Plane and Axisymmetric—Applied to Thermal Stress Fracture, “Computational Fracture Mechanics” E. F. Rybicki and S. E. Benzley, eds., ASME, New York, 1975Google Scholar
  13. 13.
    S. E. Benzley and Z. E. Beizinger, CHILES-A Finite Element Computer Program that Calculates the Intensities of Linear Elastic Singularities, Sandia Lab Rept SLA-73- 0894, 1973Google Scholar
  14. 14.
    A. F. Emery, Stress Intensity Factors for Thermal Stresses in Thick Hollow Cylinders, Trans ASME, J. Basic Engin, 88: 45, 1966Google Scholar
  15. 15.
    A. F. Emery, G. Walker and J. A. Williams, A Green’s Function for Stress Intensity Factors of Edge Cracks and its Application to Thermal Stresses, Trans ASME, J. Basic Engin, 91: 618, 1969Google Scholar
  16. 16.
    A. S. Kobayashi, A. F. Emery, W. J. Love and N. Polvanich, Surface Flaws in Thermally Shocked Hollow Cylinders, Proc. 3rd Int. Conf. in Str. Mech. in Reactor Tech., 3:11, 1975Google Scholar
  17. 17.
    A. S. Kobayashi, A. F. Emery and W. J. Love, Surface Flaw in a Pressurized and Thermally Shocked Hollow Cylinder, Int. J. Press Ves and Piping, 5: 103, 1977CrossRefGoogle Scholar
  18. 18.
    G. G. Chell, The Stress Intensity Factors for Part Through Thickness Embedded and Surface Flaws Subject to a Stress Gradient, Engin Fract Mech, 8: 331, 1976CrossRefGoogle Scholar
  19. 19.
    E. F. Rybicki and M. F. Kanninen, A Finite Element Calculation of Stress Intensity Factors by a Modified Crack Closure Integral, Engin Fract Mech, 9: 931, 1977CrossRefGoogle Scholar
  20. 20.
    A. F. Emery, J. A. Williams and J. Avery, Thermal Stress Concentration Caused by Structural Discontinuities, SESA J, 9: 558, 1969Google Scholar
  21. 21.
    A. G. Evans and S. M. Wiederhorn, Proof Testing of Ceramic Materials- An Analytical Basis for Failure Prediction, Int. J. Fract., 10: 379, 1974CrossRefGoogle Scholar
  22. 22.
    M. K. Kassir, Stress Intensity Factors for an Insulated Half-Plane Crack, Trans ASME, J. Appl Mech. 43: 107, 1976MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    M. K. Kassir, Thermal Crack Propagation, Trans ASME, J. Basic Engin, 93: 643, 1971Google Scholar
  24. 24.
    H. Sekine, Thermal Stress Singularities at Tips of a Crack in a Semi-Infinite Medium under Uniform Heat Flow, Engin Fract Mech, 7: 713, 1975CrossRefGoogle Scholar
  25. 25.
    H. Sekine, Thermal Stresses near Tips of an Insulated Line Crack in a Semi-Infinite Medium under Uniform Heat Flux, Engin Fract Mech, 9: 499, 1977CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • A. F. Emery
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations