Advertisement

Residual Stresses and Microcracking Induced by Thermal Contraction Inhomogeneity

  • A. G. Evans
  • D. R. Clarke

Abstract

Brittle materials are subject to microcrack formation at grain boundaries and at second phase particles. These cracks are induced by residual stress that results from incompatibilities in thermal contraction. The development of residual stress and its partial relaxation by diffusion (at elevated temperatures) are described. The evolution of microcracks within the residual stress fields are then examined. Particular attention is devoted to considerations of the critical microstructural dimension at the onset of microcracking.

Keywords

Residual Stress Stress Intensity Factor Stress Relaxation Hydrostatic Stress Thermal Contraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.G. Hoagland, G.T. Hahn and A.R. Rosenfield, Rock Mechanics 5, 77 (1973).CrossRefGoogle Scholar
  2. 2.
    F.A. McClintock and H.J. Mayson, ASME Applied Mechanics Conf. (June 1976).Google Scholar
  3. 3.
    H.J. Siebenbeck, D.P.H. Hasselman, J.J. Cleveland and R.C.Bradt, Jnl. Amer. Ceram. Soc. 59, 241 (1976).CrossRefGoogle Scholar
  4. 4.
    F.F. Lange, Fracture Mechanics of Ceramics (Ed. R.C. Bradt, D.P.H. Hasselman and F.F. Lange) Plenum, N.Y. Vol. 4 (1977).Google Scholar
  5. 5.
    A.G. Evans, Acta Met. 26, 1845 (1978).CrossRefGoogle Scholar
  6. 6.
    D.R. Clarke, Acta Met., in Press.Google Scholar
  7. 7.
    Y.M. Ito, M. Rosenblatt, L.Y. Cheng, F.F. Lange and A.G. Evans, Int. J. Fract. (In Press).Google Scholar
  8. 8.
    R.W. Davidge and G. Tappin, Jnl. Mater. Sci 3, 297 (1968).CrossRefGoogle Scholar
  9. 9.
    J.A. Kuszyk and R.C. Bradt, Jnl. Amer. Ceram. Soc. 56, 420 (1973).CrossRefGoogle Scholar
  10. 10.
    W. Weibull, Ingenioers Vetenskaps Akad., 151, (1939).Google Scholar
  11. 11.
    A.G. Evans, Jnl. Mater. Sci., 9 210 (1974)Google Scholar
  12. 12.
    O. Yardar, I. Finnie, D.S. Biswas and R.M. Fulrath, Intl. Jnl. Frac. 13, 215 (1977).CrossRefGoogle Scholar
  13. 13.
    A.G. Evans, D.S. Biswas and R.M. Fulrath, Jnl. Amer. Ceram. Soc. 62, 95 (1979)CrossRefGoogle Scholar
  14. 14.
    W.D. Kingery and B. Francois, in “Sintering and Related Phenomena,” edited G.C. Kuczynski, Gordon and Breach, 1967.Google Scholar
  15. 15.
    J.E. Blendell, R.L. Coble and R.J. Charles, in “Ceramic Microstructure’76,” edited R.M. Fulrath and J.A. Pask, Westview Press, Boulder, 1977.Google Scholar
  16. 16.
    J.D. Eshelby, Proc. Roy. Soc., A241, 376 (1957).MathSciNetGoogle Scholar
  17. 17.
    A.G. Evans and A.H. Heuer, Jnl. Amer. Ceram. Soc. 63, (May/June 1980), to be published.Google Scholar
  18. 18.
    J. Seising, Jnl. Amer. Ceram. Soc., 44, 419 (1961).CrossRefGoogle Scholar
  19. 19.
    L.M. Brown and D.R. Clarke, Acta. Met. 25, 563 (1977).CrossRefGoogle Scholar
  20. 20.
    D.R. Clarke, PhD Thesis, University of Cambridge (1974)Google Scholar
  21. 21.
    D.R. Clarke to be published.Google Scholar
  22. 22.
    G.C. Weatherly, Phil. Mag. 17, 791 (1968).CrossRefGoogle Scholar
  23. 23.
    Y. Fu and A.G. Evans, to be published.Google Scholar
  24. 24.
    R. Raj and M.F. Ashby, Acta Met. 23, 653 (1975).CrossRefGoogle Scholar
  25. 25.
    D.R. Clarke and A.G. Evans, to be published.Google Scholar
  26. 26.
    A.G. Evans and A.S. Rana, Acta Met., 28, 129 (1980).CrossRefGoogle Scholar
  27. 27.
    R.M. Cannon and R.L. Coble, Deformation of Ceramics (Ed., R.E. Tressler and R.C. Bradt ), Plenum, N.Y. (1975) p. 61.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • A. G. Evans
    • 1
  • D. R. Clarke
    • 2
  1. 1.University of CaliforniaBerkeleyUSA
  2. 2.Rockwell International Science CenterThousand OaksUSA

Personalised recommendations