Skip to main content

Improvement of Thermal Shock Resistance of Brittle Structural Ceramics by a Dispersed Phase of Zirconia

  • Chapter
Thermal Stresses in Severe Environments

Abstract

This paper discusses the effect of unstabilized zirconia dispersions on the thermal shock resistance of brittle structural ceramics.

A general discussion is given of the preferred direction of modification of the pertinent material properties which affect thermal shock resistance. The nature of the crystallographic phase transformation in the zirconia and its effect on these properties is presented. The zirconia dispersed phase can lead to significant improvements in fracture toughness by transformation - or microcrack toughening. The volume change during the zirconia phase transformation also lowers the effective coefficient of thermal expansion. Surface compressive stresses which result from the phase transformation during surface grinding also are beneficial in improving thermal shock resistance. The zirconia phase also can change the unstable (cȧtastrophic) mode of failure to the more preferred stable one with decrease in fracture stress. These effects are illustrated by experimental data for composites, consisting of zirconia dispersions in aluminum oxide, silicon nitride and zircon matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alan Arias, “Thermal Shock Resistance of Zirconia with 15 Mole % Titanium,” J. Amer. Ceram. Soc., 49 (1966) 334.

    Article  Google Scholar 

  2. K. Chyung, “Fracture Energy and Thermal Shock Resistance of Mica Glass-Ceramics,” Fracture Mechanics of Ceramics, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange, Plenum Press, New York (1974).

    Google Scholar 

  3. R. C. Rossi, “Thermal Shock Resistance Ceramics with Second-Phase Dispersion,” Amer. Ceram. Soc. Bull., 48 (1969) 736.

    Google Scholar 

  4. N. Claussen, “Fracture Toughness of A12O3 with an Unstabilized Dispersed Phase,” J. Amer. Ceram. Soc., 59 (1976) 49.

    Article  Google Scholar 

  5. R. C. Garvie, R. H. Hannink, and R. T. Pascoe, “Ceramic Steel,” Nature, 258 (1973) 703.

    Article  Google Scholar 

  6. D. L. Porter, and A. H. Heuer, “Mechanism of Toughening Partially-Stabilized Zirconia (PSZ),” J. Amer. Ceram. Soc., 60 (1977) 183.

    Article  Google Scholar 

  7. N. Claussen, J. Steeb, and R. F. Pabst, “Effect of Induced Microcracking on the Fracture Toughness of Ceramics,” Amer. Cer. Soc., Bull., 56 (1977) 559.

    Google Scholar 

  8. D. L. Porter, A. G. Evans, and A. H. Heuer, “Transformation-Toughening in Partially-Stabilized Zirconis (PSZ),” Acta. Met., 27 (1979) 1649.

    Google Scholar 

  9. N. Claussen, “Stress-Induced Transformation of Metastable Tetra gonal Zr02 Particles in Ceramic Matrices,” J. Amer. Ceram. Soc. 61 (1978) 85.

    Article  Google Scholar 

  10. D. P. H. Hasselman, “Figures-of-Merit for the Thermal Stress Resistance of High-Temperature Brittle Materials,” Ceramurgia, 4 (1979) 147.

    Article  Google Scholar 

  11. D. P. H. Hasselman, “Unified Theory of Thermal Shock Fracture Initiation and Crack Propagation of Brittle Ceramics,” J. Amer. Ceram. Soc., 52 (1969) 600.

    Article  Google Scholar 

  12. N. Claussen and J. Jahn, “Transformation of Zr02 particles in a Ceramic Matrix,” Ber. Dt. Keram. Ges., 55 (1978) 487.

    Google Scholar 

  13. E. C. Subbarao, H. S. Maiti and K. K. Srivastava, “Martensitic Transformation in Zirconia,” Phys. Stat. Sol., (a) 21 (1974) 9–40.

    Article  Google Scholar 

  14. F. F. Lange in Fracture Mechanics of Ceramics, Vol. 2, R. C. Bradt, D. P. H. Hasselman and F. F. Lange, Plenum Publ. Corp., New York (1974).

    Google Scholar 

  15. R. C. Garvie, “The Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect,” J. Phys. Chem., 69 (1965) 1238.

    Article  Google Scholar 

  16. N. Claussen and R. Wagner, 1979, “Influence of Surface Condition on Strength of A12O3 Containing Tetragonal Zr02,” Amer. Ceram. Soc. Bull., 58 (1978) 883.

    Google Scholar 

  17. R. T. Pascoe and R. C. Garvie, in R. M. Fulrath and J. A. Pask (Eds.), Ceramic Microstructures,’76, Westview Press, Boulder, Colorado (1977).

    Google Scholar 

  18. N. Claussen and J. Jahn, “Mechanical Properties of Sintered and Hot-Pressed Si3N4-Zr02 Composites,” J. Am. Ceram. Soc., 61 (1978) 94.

    Article  Google Scholar 

  19. R. C. Garvie, personal communication.

    Google Scholar 

  20. N. Claussen and G. Petzow, “Strengthening and Toughening Compacts in Ceramics,” Proc. 4th CIMTEC, St. Vincent, Italy (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Claussen, N., Hasselman, D.P.H. (1980). Improvement of Thermal Shock Resistance of Brittle Structural Ceramics by a Dispersed Phase of Zirconia. In: Hasselman, D.P.H., Heller, R.A. (eds) Thermal Stresses in Severe Environments. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3156-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3156-8_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3158-2

  • Online ISBN: 978-1-4613-3156-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics