Advertisement

Thermal Shock of Refractories

  • J. Homeny
  • R. C. Bradt

Abstract

The quantitative description of the thermal shock of refractories is reviewed with emphasis focused on those physical properties pertinent to the calculation of damage resistance parameters. The excellent correspondence between theoretical damage resistance parameters and a variety of laboratory thermal shock tests of refractories is summarized. Microstructural features are discussed both from a crack propagation resistance viewpoint and their effects on other physical properties that affect thermal shock behavior.

Keywords

Thermal Shock Fracture Initiation Slow Crack Growth Thermal Shock Test Damage Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. Coxey, pp. 9–13, “Refractories”, Pennsylvania State University (1950).Google Scholar
  2. 2.
    W. D. Kingery, J. Amer. Cer. Soc., 38 (1): 3–15 (1955).CrossRefGoogle Scholar
  3. 3.
    D. P. H. Hasselman, J. Amer. Cer. Soc., 50 (9): 229–234 (1963).CrossRefGoogle Scholar
  4. 4.
    J. White, Refractories J., 52 (11–12): 10–19 (1976).Google Scholar
  5. 5.
    V. S. Kienow, Ber. Dt. Keram. Ges., 47 (7): 426–430 (1970).Google Scholar
  6. 6.
    J. H. Ainsworth and R. H. Herron, Proc. 9th St. Louis Refractories Symp. (1973).Google Scholar
  7. 7.
    R. L. Shultz, Private Communication.Google Scholar
  8. 8.
    D. P. H. Hasselman, Bull. Amer. Cer. Soc., 49 (12): 1033–1037 (1970).Google Scholar
  9. 9.
    H. C. Chandan, R. C. Bradt, and G. E. Rindone, J. Amer. Cer. Soc., 61 (5–6): 207–210 (1978).CrossRefGoogle Scholar
  10. 10.
    J. 0. Outwater, M. C. Murphy, R. G. Kumble, and J. T. Berry, pp. 127–138, ASTM STP 559; ASTM (1974).Google Scholar
  11. 11.
    B. J. Pletka, E. R. Fuller, Jr., and B. G. Koepke, pp. 19–37, ASTM STP 678; ASTM (1979).Google Scholar
  12. 12.
    T. A. Adams, D. J. Landini, C. A. Schumacher, and R. C. Bradt (to be published).Google Scholar
  13. 13.
    J. Nakayama, J. Amer. Cer. Soc., 48 (11): 583–587 (1965).CrossRefGoogle Scholar
  14. 14.
    J. Nakayama, pp. 759–778, Vol. 2, “Fracture Mechanics of Ceramics”, Plenum Publ. Corp. (1974).Google Scholar
  15. 15.
    D. P. H. Hasselman, J. Amer. Cer. Soc., 52 (11): 600–604 (1969).CrossRefGoogle Scholar
  16. 16.
    D. P. H. Hasselman, J. Amer. Cer. Soc., 53 (9): 490–495 (1970).CrossRefGoogle Scholar
  17. 17.
    D. P. H. Hasselman, pp. 89–103, “Ceramics in Severe Environment”, Plenum Publ. Corp. (1971).Google Scholar
  18. 18.
    D. P. H. Hasselman, Ber. Dt. Keram. Ges., 54 (6): 195–201 (1977)Google Scholar
  19. 19.
    J. Nakayama, J. J. Appl. Phys., 3 (71): 422–423 (1964).Google Scholar
  20. 20.
    H. G. Tattersall and G. Tappin, J. Mat. Sc., 1: 296–301 (1966).CrossRefGoogle Scholar
  21. 21.
    J. Nakayama and M. Ishizuka, Bull. Amer. Cer. Soc., 45 (7): 666–669 (1966).Google Scholar
  22. 22.
    J. B. Wachtman, J. Amer. Cer. Soc., 57 (12): 509–519 (1974).CrossRefGoogle Scholar
  23. 23.
    W. F. Brown and J. E. Srawley, pp. 3–15, ASTM STP 410; ASTM (1966).Google Scholar
  24. 24.
    A. L. Treusch, M. S. Thesis, The Pennsylvania State University (1973).Google Scholar
  25. 25.
    J. H. Ainsworth and R. H. Herron, Bull. Amer. Cer. Soc., 53 (7): 533–538 (1974).Google Scholar
  26. 26.
    D. R. Larson, J. A. Coppola, D. P. H. Hasselman, and R. C. Bradt, J. Amer. Cer. Soc., 57 (10): 417–421 (1974).CrossRefGoogle Scholar
  27. 27.
    D. R. Larson and D. P. H. Hasselman, Trans. Brit. Cer. Soc., 74 (2): 59–64 (1975).Google Scholar
  28. 28.
    S. B. Stellan Persson, pp. 325–328, Proc. 3rd CIMTEC, Italy, May (1976).Google Scholar
  29. 29.
    T. A. Beals, B. S. Thesis, The Pennsylvania State University (1978).Google Scholar
  30. 30.
    S. B. Stellan Persson, pp. 37–55, 3rd Nordic High Temp. Symp. (1972).Google Scholar
  31. 31.
    T. H. Hawisher and C. E. Semler, Ref. Res. Center Report, April (1979).Google Scholar
  32. 32.
    C. E. Semler and T. H. Hawisher, Paper 27-R-79, Amer. Cer. Soc 81st Annual Meeting (1979).Google Scholar
  33. 33.
    T. H. Hawisher, C. E. Semler, and R. C. Bradt, Paper 28-R-79, Amer. Cer. Soc. 81st Annual Meeting (1979).Google Scholar
  34. 34.
    C. A. Schumacher, M. S. Thesis, The Pennsylvania State University (1980).Google Scholar
  35. 35.
    J. J. Uchno, R. C. Bradt, and D. P. H. Hasselman, Bull. Amer. Cer. Soc., 55 (7): 665–668 (1976).Google Scholar
  36. 36.
    J. A. Ruszyk and R. C. Bradt, Ind. Heat., J. Heat. Tech., 52 (3): 61–64 (1975).Google Scholar
  37. 37.
    J. A. Kuszyk and R. C. Bradt, Ind. Heat., J. Heat. Tech., 52 (4): 24–26 (1975).Google Scholar
  38. 38.
    D. J. Landini, M.S. Thesis, The Pennsylvania State University (1980).Google Scholar
  39. 39.
    P. 42, BrickandClayRecord, October (1979).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • J. Homeny
    • 1
    • 2
  • R. C. Bradt
    • 1
    • 2
  1. 1.Ceramic Science and Engineering SectionThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Materials Science and EngineeringThe Pennsylvania State UniversityUSA

Personalised recommendations