Advertisement

Effect of Spatial Variation of Thermal Conductivity on Magnitude of Tensile Thermal Stresses in Brittle Materials Subjected to Convective Heating

  • K. Satyamurthy
  • D. P. H. Hasselman
  • J. P. Singh
  • M. P. Kamat

Abstract

The results are presented for the effect of spatially varying thermal conductivity on the tensile thermal stress developed in a solid and a hollow circular cylinder subjected to different heating conditions. It is shown that the maximum tensile thermal stress in brittle ceramics can be reduced significantly by redistributing the temperature profile using (a) a spatial variation in thermal conductivity, (b) a spatial variation in pore content which in turn changes the density, thermal conductivity and modulus of elasticity and (c) by considering the effect of temperature on the thermal conductivity and specific heat. Possible methods for creating such variations in the material properties are discussed.

Keywords

Thermal Conductivity Thermal Stress Biot Number Maximum Tensile Stress Pore Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. P. H. Hasselman, Figures-of-Merit For the Thermal Stress Resistance of High-Temperature Brittle Materials: A Review, Ceramurgia, 4: 147 (1978).Google Scholar
  2. 2.
    D. P. H. Hasselman and G. E. Youngblood, Enhanced Thermal Stress Resistance of Structural Ceramics with Thermal Conductivity Gradient, J. Amer. Ceram. Soc., 61:49 (1978).CrossRefGoogle Scholar
  3. 3.
    K. Satyamurthy, M. P. Kamat and D. P. H. Hasselman, Effect of Spatially Varying Thermal Conductivity on Magnitude of Thermal Stress in Brittle Ceramics Subjected to Convective Heating, J. Amer. Ceram. Soc., (in review)Google Scholar
  4. 4.
    K. Satyamurthy, J. P. Singh, M. P. Kamat and D. P. H. Hasselman, Effect of Spatially Varying Porosity on Magnitude of Thermal Stress During Steady-State Heat Flow, J. Amer. Ceram. Soc., 62:431 (1979).CrossRefGoogle Scholar
  5. 5.
    K. Satyamurthy, J. P. Singh, M. P. Kamat and D. P. H. Hasselman, Thermal Stress Analysis of Brittle Ceramics With Density Gradients under Conditions of Transient Convective Heat Transfer, Trans. Brit. Ceram. Soc., (in review).Google Scholar
  6. 6.
    H. S. Carslaw and J. C. Jaeger, “Conduction of Heat in Solids,” 2nd Ed., Oxford University Press, London (1959).Google Scholar
  7. 7.
    B. A. Boley and J. H. Weiner, “Theory of Thermal Stresses,” J. Wiley, New York (1960).zbMATHGoogle Scholar
  8. 8.
    R. M. Spriggs, Expression of Effect of Porosity on Elastic Modulus of Polycrystalline Refractory Materials, Particularly Aluminum Oxide, J. Amer. Ceram. Soc., 44:628 (1961).CrossRefGoogle Scholar
  9. 9.
    F. P. Knudsen, Dependence of Mechanical Strength of Brittle Polycrystalline Specimens on Porosity and Grain Size, J. Amer. Ceram. Soc., 42:376 (1959).CrossRefGoogle Scholar
  10. 10.
    J. C. Jaeger, On Thermal Stresses in Circular Cylinders, Phil. Mag. 36:418 (1945).MathSciNetzbMATHGoogle Scholar
  11. 11.
    Y. S. Touloukian, R. W. Powell, C. Y. Ho and P. G. Klemens, Thermal Conductivity: Non-Metallic Solids (Thermophysical Properties of Matter, Vol. 2, p. 119, IFI) Plenum, New York (1970).Google Scholar
  12. 12.
    Y. S. Touloukian and E. H. Buyco, Specific Heat: Non-Metallic Solids (Thermophysical Properties of Matter, Vol. 5, pp. 27–29, IFI) Plenum, New York (1970).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • K. Satyamurthy
    • 1
    • 2
  • D. P. H. Hasselman
    • 1
    • 2
  • J. P. Singh
    • 1
    • 2
  • M. P. Kamat
    • 1
    • 2
  1. 1.Department of Materials EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  2. 2.Department of Engineering Science and MechanicsVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations