Skip to main content

Cell Motility: I Cytoplasmic Movements

  • Chapter
Ultrastructure, Macromolecules, and Evolution
  • 105 Accesses

Abstract

One important cell function with which microtubules and microfilaments are closely associated is the movement of cytoplasm. Such movement can take a number of different forms, in addition to those endo- and exocytotic processes already described (Chapter 1, Section 1.2.1); however, these activities reappear here in various guises. Furthermore, there are three other major types of this basic function—amoeboid movement, microvillus production, and cytoplasmic streaming—which, in that same sequence, provide the main topics for discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aikman, D. P., and Anderson, W. P. 1971. A quantitative investigation of a peristaltic model for phloem translocation. Ann. Bot. 35:761–772.

    Google Scholar 

  • Allen, N. S. 1974. Endoplasmic filaments generate the motive force for rotational streaming in Nitella. J. Cell Biol 63:270–287.

    Google Scholar 

  • Allen, N. S. 1976. Undulating filaments in Nitella endoplasm and motive force generation. In: Goldman, R., Pollard, T., and Rosenbaum, J., eds., Cell Motility, Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory, Book B, pp. 613–621.

    Google Scholar 

  • Allen, N. S., and Allen, R. D. 1978. Cytoplasmic streaming in green plants. Annu. Rev. Biophys. Bioeng. 7:497–526.

    Google Scholar 

  • Allen, R. D. 1961. Amoeboid movement. In: Brachet, J., and Mirsky, A. E., eds., The Cell: Biochemistry, Physiology, Morphology, New York, Academic Press, Vol. 2, pp. 135–216.

    Google Scholar 

  • Allen, R. D. 1974. Some new insights concerning cytoplasmic transport. Symp. Soc. Exp. Biol. 28:15–26.

    Google Scholar 

  • Allen, R. D. 1977. Concluding remarks. In: Brinkley, B. R., and Porter, K. R., eds. International Cell Biology, 1976–1977, New York, Rockefeller University Press, pp. 403–406.

    Google Scholar 

  • Allen, R. D., and Allen, N. S. 1978. Cytoplasmic streaming in amoeboid movement. Annu. Rev. Biophys. Bioeng. 7:469–495.

    Google Scholar 

  • Allen, R. D., Cooledge, J., and Hall, P. J. 1960. Streaming in cytoplasm dissociated from the giant amoeba, Chaos chaos. Nature (London) 187:896–899.

    ADS  Google Scholar 

  • Allen, R. D., Francis, D., and Zeh, R. 1971. Direct test of the positive gradient theory of pseudopod extension and retraction in amoebae. Science 174:1237–1240.

    ADS  Google Scholar 

  • Anderson, O. R., and Hoeffler, W. K. 1979. Fine structure of a marine proteomyxid and cytochemical changes during encystment. J. Ultrastruct. Res. 66:276–287.

    Google Scholar 

  • Anderson, W. P. 1976. Transport through roots. In: LĂĽttge, U., and Pitman, M. G., eds., Encyclopedia of Plant Physiology, Berlin, Springer-Verlag, n.s. Vol. 2, pp. 129–156.

    Google Scholar 

  • Armstrong, M. T., and Armstrong, P. B. 1979. The effects of antimicrotubule agents on cell motility in fibroblast aggregates. Exp. Cell Res. 120:359–364.

    Google Scholar 

  • Augsten, H., and Finke, L. 1978. Wirkung des Lichts auf die Protoplasmaströmung in WĂĽrzelhaaren von Hordeum vulgare. Biochem. Physiol. Pflanz. 172:181–185.

    Google Scholar 

  • Bardele, C. F. 1972. A microtubule model for ingestion and transport in the suctorian tentacle. Z. Zellforsch. Mikrosk. Anat. 126:116–134.

    Google Scholar 

  • Bardele, C. F. 1974. Transport of material in the suctorian tentacle. Symp. Soc. Exp. Biol. 28:191–208.

    Google Scholar 

  • Bardele, C.F., and Grell, K. G. 1967. Elektronenmikroskopische Beobachtungen zur Nahrungsaufnahme bei den Suktor Acineta tuberosa. Z. Zellforsch. Mikrosk. Anat. 80:108–123.

    Google Scholar 

  • Bastrom, T. E., and Walker, N. A. 1976. Intercellular transport of chloride in Chara. J. Exp. Bot. 27:347–357.

    Google Scholar 

  • Breckheimer-Beyrich, H. 1954. Weitere Erkenntnisse ĂĽber die Wirkung zentrifugaler Kräfte auf das Protoplasma von Nitella flexilis. Ber. Dtsch. Bot. Ges. 67:86–92.

    Google Scholar 

  • Bretscher, A., and Weber, K. 1979. Villin: The major microfilament-associated protein of the intestinal microvillus. Proc. Natl. Acad. Sci. USA 76:2321–2325.

    ADS  Google Scholar 

  • Brunser, O., and Luft, J. H. 1970. Fine structure of the apex of absorptive cells of rat small intestine. J. Ultrastruct. Res. 31:291–311.

    Google Scholar 

  • Burgess, D. R., and Schroeder, T. E. 1977. Polarized bundles of actin filaments within microvilli of fertilized sea urchin eggs. J. Cell Biol. 74:1032–1038.

    Google Scholar 

  • Canella, M. F. 1957. Studie recherche sui tentaculiferi nel quadro della biologia generale. Ann. Univ. Ferrara (3)1:1–716.

    Google Scholar 

  • Condeelis, J. S. 1974. The identification of F-actin in the pollen tube and protoplast of Amaryllis belladonna. Exp. Cell Res. 88:435–439.

    Google Scholar 

  • Condeelis, J. S., and Taylor, D. L. 1977. The control of gelation, solation, and contraction in extracts from Dictyostelium discoideum. J. Cell Biol. 74:901–927.

    Google Scholar 

  • Corti, B. 1774. Osservazioni microscopiche sulla tremela e sulla circulzione del fluido in una pianta acquajuola, Luca, Italy.

    Google Scholar 

  • Cronshaw, J., and Esau, K. 1967. Tubular and fibrillar components of mature and differentiating sieve elements. J. Cell Biol. 34:801–816.

    Google Scholar 

  • Cronshaw, J., and Esau, K. 1968. Cell division in leaves of Nicotiana. Protoplasma 65:1–24.

    Google Scholar 

  • Dahlström, A., Häggendal, J., Heiwall, P. O., Larsson, P. A., and Saunders, N. R. 1974. Intraaxonal transport of neurotransmitters in mammalian neurons. Symp. Soc. Exp. Biol. 28:229–247.

    Google Scholar 

  • Dellinger, O. P. 1906. Locomotion of amoebae and allied forms. J. Exp. Zool. 3:337–358.

    Google Scholar 

  • Dujardin, F. 1835. Recherches sur les organismes. Ann. Sci. Nat. Zool. Biol. Anim. 4:343–377.

    Google Scholar 

  • Dujardin, F. 1838. Ann. Sci. Nat. Zool. 10:230.

    Google Scholar 

  • Eckert, B. S., Warren, R. H., and Rubin, R. W. 1977. Structural and biochemical aspects of cell motility in amebas of Dictyostelium discoideum. J. Cell Biol. 72:339–358.

    Google Scholar 

  • Eddy, E. M., and Shapiro, B. M. 1976. Changes in the topography of the sea urchin egg after fertilization. J. Cell Biol. 71:35–48.

    Google Scholar 

  • Fensom, D. S., and Williams, E. J. 1974. On Allen’s suggestion for long-distance translocation in phloem of plants. Nature (London) 250:490–492.

    ADS  Google Scholar 

  • Franke, W. W., Rathke, P. C., Seib, E., Trendelenburg, M. F., Osborn, M., and Weber, K. 1976. Distribution and mode of attachment of microfilamentous structures and actin in the cortex of the amphibian oocyte. Cytobiologie Z. Exp. Zeilforsch. 14:111–130.

    Google Scholar 

  • Gey, G. O. 1956. Some aspects of the constitution and behavior of normal and malignant cells maintained in continuous culture. Harvey Lect. 50:154–229.

    Google Scholar 

  • Glass, A. D. M., and Perley, J. E. 1979. Cytoplasmic streaming in the root cortex and its role in the delivery of potassium to the shoot. Planta 145:399–401.

    Google Scholar 

  • Goldacre, R. J. 1952a. The folding and unfolding of protein molecules as a basis of osmotic work. Int. Rev. Cytol. 1:135–164.

    Google Scholar 

  • Goldacre, R. J. 1952b. The action of general anaesthetics on amoebae and the mechanism of the response to touch. Symp. Soc. Exp. Biol. 6:128–144.

    Google Scholar 

  • Goldacre, R. J. and Lorsch, I. J. 1950. Folding and unfolding of protein molecules in relation to cytoplasmic streaming, amoeboid movements and osmotic works. Nature (London) 166:497–500.

    ADS  Google Scholar 

  • Gray, E. G. 1975. Presynaptic microtubules and their association with synaptic vesicles, Proc. R. Soc. London Ser. B 190:369–372.

    ADS  Google Scholar 

  • Griffin, J. L., and Allen, R. D. 1960. The movement of particles attached to the surface of amoebae in relation to current theories of amoeboid movement. Exp. Cell Res. 20:619–622.

    Google Scholar 

  • Hauser, M. 1970. Elektronenmikroskopische Untersuchung an dem Suktor Paracineta limbata Maupas. Z. Zellforsch. Mikrosk. Anat. 106:584–614.

    ADS  Google Scholar 

  • Hepler, P. K., and Jackson, W. T. 1968. Microtubules and early stages of cell-plate formation in the endosperm of Haemanthus katherinae Baker. J. Cell Biol. 38:437–446.

    Google Scholar 

  • Hepler, P. K., and Palevitz, B. A. 1974. Microtubules and microfilaments. Annu. Rev. Plant Physiol. 25:309–362.

    Google Scholar 

  • Heslop, J. P. 1974. Fast transport along nerves. Symp. Soc. Exp. Biol. 28:209–227.

    Google Scholar 

  • Heslop, J. P., and Howes, E. A. 1972. Temperature and inhibitor effects on fast axonal transport in a molluscan nerve. J. Neurochem. 19:1709–1716.

    Google Scholar 

  • Hiramoto, Y. 1955. Nature of the perivitelline space in sea urchin eggs. Jpn. J. Zool. 11:333–344.

    Google Scholar 

  • Holt, P. A., and Corliss, J. O. 1973. Pattern variability in microtubular arrays associated with the tentacles of Actinobolina (Ciliata: Gymnostomatida). J. Cell Biol. 58:213–219.

    Google Scholar 

  • Holt, P. A., Lynn, D. H., and Corliss, J. O. 1973. An ultrastructural study of the tentacle-bearing ciliate Actinobolina smalli, n. sp., and its systematic and phylogenetic implications. Protistology 9:521–541.

    Google Scholar 

  • Hull, R. W. 1961. Studies on suctorian protozoa: The mechanism of ingestion of prey cytoplasm. J. Protozool. 8:351–359.

    Google Scholar 

  • Huxley, H. E. 1969. The mechanism of muscular contraction. Science 164:1356–1366.

    ADS  Google Scholar 

  • Hyams, J. S., and Stebbings, H. 1977. The distribution and function of microtubules in nutritive tubes. Tissue Cell 9:537–545.

    Google Scholar 

  • Hyams, J. S., and Stebbings, H. 1979. The mechanism of microtubule associated cytoplasmic transport. Cell Tissue Res. 196:103–116.

    Google Scholar 

  • Ishikawa, H., Bischoff, R., and Holtzer, H. 1969. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J. Cell Biol. 43:311–316.

    Google Scholar 

  • Iwanami, Y. 1956. Protoplasmic movement in pollen grains and tubes. Phytomorphology 6:288–295.

    Google Scholar 

  • Jahn, T. L., and Votta, J. J. 1972. Capillary suction test of the pressure gradient theory of amoeboid motion. Science 177:636–637.

    ADS  Google Scholar 

  • Jahn, T. L., Bovee, E. C., and Small, E. B. 1960. The basis for a new major dichotomy of the Sarcodina. J. Protozool. 7(Suppl.):8.

    Google Scholar 

  • Johnson, R. P. C. 1968. Microfilaments in pores between frozen etched sieve elements. Planta 81:314–332.

    Google Scholar 

  • Jurand, A., and Bomford, R. 1965. The fine structure of the parasitic suctorian Podophrya parameciorum. J. Microsc. (Paris) 4:509–522.

    Google Scholar 

  • Kamiya, N. 1959. Protoplasmic streaming. Protoplasmatologia 8(3a): 1–199.

    MathSciNet  Google Scholar 

  • Kamiya, N. 1962. Cytoplasmic streaming. Encycl. Plant Physiol. 17(2):979–1035.

    Google Scholar 

  • Kamiya, N. 1964. The motive force of endoplasmic streaming in the amoeba. In: Allen, R. D., and Kamiya, N., eds., Primitive Motile Systems in Cell Biology, New York, Academic Press, pp. 257–278.

    Google Scholar 

  • Kamiya, N., and Kuroda, K. 1956. Velocity distribution of the protoplasmic streaming in Nitella cell. Bot. Mag. 69:544–554.

    Google Scholar 

  • Kamiya, N., and Kuroda, K. 1973. Dynamics of cytoplasmic streaming in a plant cell. Biorheology 10:179–187.

    Google Scholar 

  • Katsumoto, T., Takayama, H., and Takagi, A. 1978. Ultrastructural organization of cultured macrophages as shown by negative staining techniques. J. Electron Microsc. 27:1–12.

    Google Scholar 

  • Kersey, Y. M., Hepler, P. K., Palevitz, B. A. and Wessels, N. K. 1976. Polarity of actin filaments in characean algae. Proc. Natl. Acad. Sci. USA 73:165–167.

    ADS  Google Scholar 

  • Kidd, P., Schatten, G., Grainger, J., and Mazia, D. 1976. Microfilaments in the sea urchin egg at fertilization. Biophys. J. 16:117a.

    Google Scholar 

  • Koppenhöfer, E., Ode, A., Rimmel, C., Schramm, M., Schuback, P., and Schumann, H. 1977. Isolated Nitella protoplasm is not excitable. J. Theor. Biol. 68:449–451.

    Google Scholar 

  • Kristensson, K. 1970. Morphological studies of the neural spread of herpes simplex virus to the central nervous system. Acta Neuropathol. 16:54–63.

    Google Scholar 

  • Kumagaya, S. 1950. Cytoplasmic streaming in pollen grains. Bot. Mag. 63:52.

    Google Scholar 

  • Lewis, W. H., and Lewis, M. R. 1924. Behavior of cells in tissue cultures. In: Cowdry, E. V., ed., General Cytology, Chicago, University of Chicago Press, pp. 385–447.

    Google Scholar 

  • Linsbauer, K. 1929. Untersuchungen ĂĽber Plasma und Plasmaströmung an Chara Zellen. Protoplasma 5:563–621.

    Google Scholar 

  • Lushbaugh, W. V., and Pittman, F. L. 1979. Microscopic observations on the filopodia of Entamoeba histolytica. J. Protozool. 26:186–195.

    Google Scholar 

  • McGee-Russell, S. M. 1974. Dynamic activities and labile microtubules in cytoplasmic transport in the marine foraminiferan Allogromia. Symp. Soc. Exp. Biol. 28:157–190.

    Google Scholar 

  • Macgregor, H. C., and Stebbings, H. 1970. A massive system of microtubules associated with cytoplasmic movement in telotrophic ovarioles. J. Cell Sci. 6:431–449.

    Google Scholar 

  • MacRobbie, E. A. C. 1971. Phloem translocation: Facts and mechanisms, a comparative survey. Biol. Rev. 46:429–482.

    Google Scholar 

  • Mann, S., Schatten, G., Steinhardt, R., and Friend, D. S. 1976. Sea urchin sperm: oocyte interaction. J. Cell Biol. 70:110a.

    Google Scholar 

  • Marsot, P., and Couillard, P. 1978. La rĂ©action phygocytaire chez Amoeba proteus. II. Phagocytose de particules non-vivantes. Can. J. Zool. 56:1497–1506.

    Google Scholar 

  • Mast, S. O. 1926. Structure, movement, locomotion, and stimulation in Amoeba. J. Morphol. Physiol. 41:347–425.

    Google Scholar 

  • Mast, S. O. 1931. Locomotion in Amoeba proteus (Leidy). Protoplasma 14:321–330.

    MathSciNet  Google Scholar 

  • Meyer, K. H. 1929. Ăśber Feinbau, Festigkeit und Kontraktilität tierischer Gewebe. Biochem. Z. 214:253–281.

    Google Scholar 

  • MonnĂ©, L. 1948. Functioning of the cytoplasm. Adv. Enzymol. 8:1–69.

    Google Scholar 

  • Mooseker, M. S. 1976. Brush border motility. J. Cell Biol. 71:417–433.

    Google Scholar 

  • Mooseker, M. S., and Tilney, L. G. 1975. Organization of an actin filament-membrane complex. Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells. J. Cell Biol. 67:725–743.

    Google Scholar 

  • Mukherjee, T. M., and Staehelin, L. A. 1971. The fine-structural organisation of the brush border of intestinal epithelial cells. J. Cell Sci. 8:573–599.

    Google Scholar 

  • Murphy, D. B., and Tilney, L. G. 1974. The role of microtubules in the movement of pigment granules in teleost melanophores. J. Cell Biol. 61:757–779.

    Google Scholar 

  • Nachmias, V. T., and Asch, A. 1976. Regulation and polarity: Results with myxomycete plasmodium and with human platelets. In: Goldman, R., Pollard, T., and Rosenbaum, J., eds., Cell Motility, Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory, Book B, pp. 771–783.

    Google Scholar 

  • Nachmias, V. T., Sullender, J., and Asch, A. 1977. Shape and cytoplasmic filaments in control and lidocaine-treated human platelets. Blood 50:39–53.

    Google Scholar 

  • Nagai, R., and Hayama, T. 1979. Ultrastructure of the endoplasmic factor responsible for cytoplasmic streaming in Chara internodal cells. J. Cell Sci. 36:121–136.

    Google Scholar 

  • Nagai, R., and Rebhun, L. I. 1966. Cytoplasmic microfilaments in streaming Nitella cells. J. Ultrastruct. Res. 14:571–589.

    Google Scholar 

  • Nowakowska, G., and Grebecki, A., 1978. Attachment of Amoeba proteus to the substrate during upside-down crawling. Acta Protozool. 17:361–368.

    Google Scholar 

  • Ochs, S., 1972. Fast transport of materials in mammalian nerve fibers. Science 176:252–260.

    ADS  Google Scholar 

  • Oplatka, A., and Tirosh, R. 1973. Active streaming in actomyosin solutions. Biochim. Biophys. Acta 305:684–688.

    Google Scholar 

  • Otto, J. J., Kane, R. E., and Bryan, J. 1979. Formation of filopodia in coelomocytes: Localization of fascin, a 58,000 dalton actin cross-linking protein. Cell 17:285–293.

    Google Scholar 

  • Palevitz, B. A. 1976. Actin cables and cytoplasmic streaming in green plants. In: Goldman, R., Pollard, T., and Rosenbaum, J., eds., Cell Motility, Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory, Book B, pp. 601–611.

    Google Scholar 

  • Palevitz, B. A., and Hepler, P. K. 1975. Identification of actin in situ at the ectoplasm-endoplasm interface of Nitella. J. Cell Biol. 65:29–38.

    Google Scholar 

  • Palevitz, B. A., Ash, J. F., and Hepler, P. K. 1974. Actin in the green alga, Nitella. Proc. Natl. Acad. Sci. USA 71:363–366.

    ADS  Google Scholar 

  • Pantin, C. F. A. 1923. On the physiology of amoeboid movement. J. Mar. Biol. Assoc. U.K. 13:1–69.

    Google Scholar 

  • Pickard, W. F. 1974. Hydrodynamic aspects of protoplasmic streaming in Chara braunii. Protoplasma 82:321–339.

    Google Scholar 

  • Pickett-Heaps, J. D. 1967. Ultrastructure and differentiation in Chara sp. I. Vegetative cells. Aust. J. Biol. Sci. 20:539–551.

    Google Scholar 

  • Pitman, M. G. 1977. Ion transport into the xylem. Annu. Rev. Plant Physiol. 28:71–88.

    Google Scholar 

  • Podlubnaya, Z. A., Tskhovrebova, L. A., Zaalishvili, M. M., and Stefanenko, G. A. 1975. Electron microscopic study of α-actinin. J. Mol. Biol. 92:357–359.

    Google Scholar 

  • Pollard, T. D., and Weihing, R. R. 1974. Cytoplasmic actin and myosin and cell movement. CRC Crit. Rev. Biochem. 2:1–65.

    Google Scholar 

  • Preston, T. M., and King, C. A. 1978. An experimental study of the interaction between the soil amoeba Naegleria gruberi and a glass substrate during amoeboid locomotion. J. Cell Sci. 34:145–158.

    Google Scholar 

  • Rebhun, L. I. 1964. Saltatory particle movements in cells. In: Allen, R. D., and Kamiya, N., eds., Primitive Motile Systems in Cell Biology, New York, Academic Press, pp. 503–525.

    Google Scholar 

  • Rebhun, L. I. 1972. Polarised intracellular particle transport. Saltatory movements and cytoplasmic streaming. Int. Rev. Cytol. 32:93–137.

    Google Scholar 

  • Robidaux, J., Sandborn, E. B., Fensom, D. S., and Cameron, M. L. 1973. Plasmatic filaments and particles in mature sieve elements of Heracleum spondylium under the electron microscope. J. Exp. Bot. 24:349–359.

    Google Scholar 

  • Rodewald, R., Newman, S. B., and Karnovsky, M. J. 1976. Contraction of isolated brush borders from the intestinal epithelium. J. Cell Biol. 70:541–554.

    Google Scholar 

  • Rudzinska, M. A. 1970. The mechanism of food intake in Tokophrya infusionum and ultra-structural changes in food vacuoles during digestion. J. Protozool. 17:626–641.

    Google Scholar 

  • Rudzinska, M. A. 1973. Do Suctoria really feed by suction? BioScience 23:87–94.

    Google Scholar 

  • Sabnis, D. D., and Jacobs, W. P. 1967. Cytoplasmic streaming and microtubules in the coenocytic marine alga, Caulerpa prolifera. J. Cell Sci. 2:465–472.

    Google Scholar 

  • Schliwa, M. 1975. Microtubule distribution and melanosome movements in fish melanophores. In: Borgers, M., and De Brabander, M., eds., Microtubules and Microtubule Inhibitors, Amsterdam, North-Holland, pp. 215–228.

    Google Scholar 

  • Seifriz, W. 1929. The contractility of protoplasm. Am. Nat. 63:410–434.

    Google Scholar 

  • Seifriz, W. 1943 Protoplasmic streaming. Bot. Rev. 9:49–123.

    Google Scholar 

  • Seifriz, W. 1952. The rheological properties of protoplasm. In: Frey-Wyssling, A., ed., Deformation and Flow in Biological Systems, Amsterdam, North-Holland, pp. 3–156.

    Google Scholar 

  • Spudich, J. A., and Amos, L. A. 1979. Structure of actin filament bundles from microvilli of sea urchin eggs. J. Mol. Biol. 129:319–331.

    Google Scholar 

  • Szamier, P. M., Pollard, T. D., and Fujiwara, K. J. 1975. Tropomyosin prevents the destruction of actin filaments by osmium. J. Cell Biol. 67:424a.

    Google Scholar 

  • Taylor, A. C. 1966. Microtubules in the microspikes and cortical cytoplasma of isolated cells. J. Cell Biol. 28:155–168.

    Google Scholar 

  • Taylor, A. C., and Robbins, E. 1963. Observations on microextensions from the surface of isolated vertebrate cells. Dev. Biol. 7:660–673.

    Google Scholar 

  • Taylor, D. L., and Wang, Y. L. 1978. Molecular cytochemistry: Incorporation of fluorescently labeled actin in living cells. Proc. Natl. Acad. Sci. USA 75:857–861.

    ADS  Google Scholar 

  • Taylor, D. L., Rhodes, J. A., and Hammond, S. A. 1976. The contractile basis of amoeboid movement. II. Structure and contractility of motile extracts and plasmalemma-ectoplasm ghosts. J. Cell Biol. 70:123–143.

    Google Scholar 

  • Thaine, R. 1961. Transcellular strands and particle movement in mature sieve tubes. Nature (London) 192:772–773.

    ADS  Google Scholar 

  • Thaine, R. 1969. Movement of sugars through plants by cytoplasmic pumping. Nature (London) 222:873–875.

    ADS  Google Scholar 

  • Tilney, L. G. 1977. Actin: Its association with membranes and the regulation of its polymerization. In: Brinkley, B. R., and Porter, K. R., eds., International Cell Biology, 1976–1977, New York, Rockefeller University Press, pp. 388–402.

    Google Scholar 

  • Tilney, L. G., and Cardell, R. R. 1970. Factors controlling the reassembly of the microvillus border of the small intestine of the salamander. J. Cell Biol. 47:408–422.

    Google Scholar 

  • Tilney, L. G., and Mooseker, M. S. 1971. Actin in the brush border of epithelial cells of the chicken intestine. Proc. Natl. Acad. Sci. USA 68:2611–2615.

    ADS  Google Scholar 

  • Tilney, L. G., and Mooseker, M. S. 1976. Actin filament-membrane attachment. Are membrane particles involved? J. Cell Biol. 71:402–416.

    Google Scholar 

  • Tucker, J. B. 1978. Endocytosis and streaming of highly gelated cytoplasm alongside rows of armbearing microtubules in the ciliate Nassula. J. Cell Sci. 29:213–232.

    Google Scholar 

  • Tyree, M. T. 1970. The symplast concept. A general theory of symplastic transport according to the thermodynamics of irreversible processes. J. Theor. Biol. 26:181–214.

    Google Scholar 

  • Tyree, M. T., Fisher, R. A., and Dainty, J. 1974. A quantitative investigation of symplastic transport in Chara corallina. II. The symplastic transport of chloride. Can. J. Bot. 52:1325–1334.

    Google Scholar 

  • Wang, E., and Goldman, R. D. 1978. Functions of cytoplasmic fibers in intracellular movements in BHK-21 cells. J. Cell Biol. 79:708–726.

    Google Scholar 

  • Ward, P. A., and Becker, E. L. 1977. Biology of leukotaxis. Rev. Physiol. Biochem. Pharmacol. 77:125–148.

    Google Scholar 

  • Weiss, P. 1961. From cell to molecule. In: Allen, J. M., ed., The Molecular Control of Cellular Activity, New York, McGraw-Hill, pp. 1–72.

    Google Scholar 

  • Wellings, J. V., and Tucker, J. B. 1979. Changes in microtubule packing during the stretching of an extensible microtubule bundle in the ciliate Nassula. Cell Tiss. Res. 197:313–323.

    Google Scholar 

  • Williamson, R. E. 1974. Actin in the alga Chara corallina. Nature (London) 248:801–802.

    ADS  Google Scholar 

  • Wohlman, A., and Allen, R. D. 1968. Structural organization associated with pseudopod extension and contraction during cell locomotion in Difflugia. J. Cell Sci. 3:105–114.

    Google Scholar 

  • Zeligs, J. D., and Wollman, S. H. 1977. Pseudopod behavior in hyperplastic thyroid follicles in vivo. J. Ultrastruct. Res. 60:99–105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Dillon, L.S. (1981). Cell Motility: I Cytoplasmic Movements. In: Ultrastructure, Macromolecules, and Evolution. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3147-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3147-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3149-0

  • Online ISBN: 978-1-4613-3147-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics