Advertisement

Cell Motility: I Cytoplasmic Movements

  • Lawrence S. Dillon

Abstract

One important cell function with which microtubules and microfilaments are closely associated is the movement of cytoplasm. Such movement can take a number of different forms, in addition to those endo- and exocytotic processes already described (Chapter 1, Section 1.2.1); however, these activities reappear here in various guises. Furthermore, there are three other major types of this basic function—amoeboid movement, microvillus production, and cytoplasmic streaming—which, in that same sequence, provide the main topics for discussion.

Keywords

Pollen Tube Actin Filament Thin Filament Cytoplasmic Streaming Amoeboid Movement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aikman, D. P., and Anderson, W. P. 1971. A quantitative investigation of a peristaltic model for phloem translocation. Ann. Bot. 35:761–772.Google Scholar
  2. Allen, N. S. 1974. Endoplasmic filaments generate the motive force for rotational streaming in Nitella. J. Cell Biol 63:270–287.Google Scholar
  3. Allen, N. S. 1976. Undulating filaments in Nitella endoplasm and motive force generation. In: Goldman, R., Pollard, T., and Rosenbaum, J., eds., Cell Motility, Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory, Book B, pp. 613–621.Google Scholar
  4. Allen, N. S., and Allen, R. D. 1978. Cytoplasmic streaming in green plants. Annu. Rev. Biophys. Bioeng. 7:497–526.Google Scholar
  5. Allen, R. D. 1961. Amoeboid movement. In: Brachet, J., and Mirsky, A. E., eds., The Cell: Biochemistry, Physiology, Morphology, New York, Academic Press, Vol. 2, pp. 135–216.Google Scholar
  6. Allen, R. D. 1974. Some new insights concerning cytoplasmic transport. Symp. Soc. Exp. Biol. 28:15–26.Google Scholar
  7. Allen, R. D. 1977. Concluding remarks. In: Brinkley, B. R., and Porter, K. R., eds. International Cell Biology, 1976–1977, New York, Rockefeller University Press, pp. 403–406.Google Scholar
  8. Allen, R. D., and Allen, N. S. 1978. Cytoplasmic streaming in amoeboid movement. Annu. Rev. Biophys. Bioeng. 7:469–495.Google Scholar
  9. Allen, R. D., Cooledge, J., and Hall, P. J. 1960. Streaming in cytoplasm dissociated from the giant amoeba, Chaos chaos. Nature (London) 187:896–899.ADSGoogle Scholar
  10. Allen, R. D., Francis, D., and Zeh, R. 1971. Direct test of the positive gradient theory of pseudopod extension and retraction in amoebae. Science 174:1237–1240.ADSGoogle Scholar
  11. Anderson, O. R., and Hoeffler, W. K. 1979. Fine structure of a marine proteomyxid and cytochemical changes during encystment. J. Ultrastruct. Res. 66:276–287.Google Scholar
  12. Anderson, W. P. 1976. Transport through roots. In: Lüttge, U., and Pitman, M. G., eds., Encyclopedia of Plant Physiology, Berlin, Springer-Verlag, n.s. Vol. 2, pp. 129–156.Google Scholar
  13. Armstrong, M. T., and Armstrong, P. B. 1979. The effects of antimicrotubule agents on cell motility in fibroblast aggregates. Exp. Cell Res. 120:359–364.Google Scholar
  14. Augsten, H., and Finke, L. 1978. Wirkung des Lichts auf die Protoplasmaströmung in Würzelhaaren von Hordeum vulgare. Biochem. Physiol. Pflanz. 172:181–185.Google Scholar
  15. Bardele, C. F. 1972. A microtubule model for ingestion and transport in the suctorian tentacle. Z. Zellforsch. Mikrosk. Anat. 126:116–134.Google Scholar
  16. Bardele, C. F. 1974. Transport of material in the suctorian tentacle. Symp. Soc. Exp. Biol. 28:191–208.Google Scholar
  17. Bardele, C.F., and Grell, K. G. 1967. Elektronenmikroskopische Beobachtungen zur Nahrungsaufnahme bei den Suktor Acineta tuberosa. Z. Zellforsch. Mikrosk. Anat. 80:108–123.Google Scholar
  18. Bastrom, T. E., and Walker, N. A. 1976. Intercellular transport of chloride in Chara. J. Exp. Bot. 27:347–357.Google Scholar
  19. Breckheimer-Beyrich, H. 1954. Weitere Erkenntnisse über die Wirkung zentrifugaler Kräfte auf das Protoplasma von Nitella flexilis. Ber. Dtsch. Bot. Ges. 67:86–92.Google Scholar
  20. Bretscher, A., and Weber, K. 1979. Villin: The major microfilament-associated protein of the intestinal microvillus. Proc. Natl. Acad. Sci. USA 76:2321–2325.ADSGoogle Scholar
  21. Brunser, O., and Luft, J. H. 1970. Fine structure of the apex of absorptive cells of rat small intestine. J. Ultrastruct. Res. 31:291–311.Google Scholar
  22. Burgess, D. R., and Schroeder, T. E. 1977. Polarized bundles of actin filaments within microvilli of fertilized sea urchin eggs. J. Cell Biol. 74:1032–1038.Google Scholar
  23. Canella, M. F. 1957. Studie recherche sui tentaculiferi nel quadro della biologia generale. Ann. Univ. Ferrara (3)1:1–716.Google Scholar
  24. Condeelis, J. S. 1974. The identification of F-actin in the pollen tube and protoplast of Amaryllis belladonna. Exp. Cell Res. 88:435–439.Google Scholar
  25. Condeelis, J. S., and Taylor, D. L. 1977. The control of gelation, solation, and contraction in extracts from Dictyostelium discoideum. J. Cell Biol. 74:901–927.Google Scholar
  26. Corti, B. 1774. Osservazioni microscopiche sulla tremela e sulla circulzione del fluido in una pianta acquajuola, Luca, Italy.Google Scholar
  27. Cronshaw, J., and Esau, K. 1967. Tubular and fibrillar components of mature and differentiating sieve elements. J. Cell Biol. 34:801–816.Google Scholar
  28. Cronshaw, J., and Esau, K. 1968. Cell division in leaves of Nicotiana. Protoplasma 65:1–24.Google Scholar
  29. Dahlström, A., Häggendal, J., Heiwall, P. O., Larsson, P. A., and Saunders, N. R. 1974. Intraaxonal transport of neurotransmitters in mammalian neurons. Symp. Soc. Exp. Biol. 28:229–247.Google Scholar
  30. Dellinger, O. P. 1906. Locomotion of amoebae and allied forms. J. Exp. Zool. 3:337–358.Google Scholar
  31. Dujardin, F. 1835. Recherches sur les organismes. Ann. Sci. Nat. Zool. Biol. Anim. 4:343–377.Google Scholar
  32. Dujardin, F. 1838. Ann. Sci. Nat. Zool. 10:230.Google Scholar
  33. Eckert, B. S., Warren, R. H., and Rubin, R. W. 1977. Structural and biochemical aspects of cell motility in amebas of Dictyostelium discoideum. J. Cell Biol. 72:339–358.Google Scholar
  34. Eddy, E. M., and Shapiro, B. M. 1976. Changes in the topography of the sea urchin egg after fertilization. J. Cell Biol. 71:35–48.Google Scholar
  35. Fensom, D. S., and Williams, E. J. 1974. On Allen’s suggestion for long-distance translocation in phloem of plants. Nature (London) 250:490–492.ADSGoogle Scholar
  36. Franke, W. W., Rathke, P. C., Seib, E., Trendelenburg, M. F., Osborn, M., and Weber, K. 1976. Distribution and mode of attachment of microfilamentous structures and actin in the cortex of the amphibian oocyte. Cytobiologie Z. Exp. Zeilforsch. 14:111–130.Google Scholar
  37. Gey, G. O. 1956. Some aspects of the constitution and behavior of normal and malignant cells maintained in continuous culture. Harvey Lect. 50:154–229.Google Scholar
  38. Glass, A. D. M., and Perley, J. E. 1979. Cytoplasmic streaming in the root cortex and its role in the delivery of potassium to the shoot. Planta 145:399–401.Google Scholar
  39. Goldacre, R. J. 1952a. The folding and unfolding of protein molecules as a basis of osmotic work. Int. Rev. Cytol. 1:135–164.Google Scholar
  40. Goldacre, R. J. 1952b. The action of general anaesthetics on amoebae and the mechanism of the response to touch. Symp. Soc. Exp. Biol. 6:128–144.Google Scholar
  41. Goldacre, R. J. and Lorsch, I. J. 1950. Folding and unfolding of protein molecules in relation to cytoplasmic streaming, amoeboid movements and osmotic works. Nature (London) 166:497–500.ADSGoogle Scholar
  42. Gray, E. G. 1975. Presynaptic microtubules and their association with synaptic vesicles, Proc. R. Soc. London Ser. B 190:369–372.ADSGoogle Scholar
  43. Griffin, J. L., and Allen, R. D. 1960. The movement of particles attached to the surface of amoebae in relation to current theories of amoeboid movement. Exp. Cell Res. 20:619–622.Google Scholar
  44. Hauser, M. 1970. Elektronenmikroskopische Untersuchung an dem Suktor Paracineta limbata Maupas. Z. Zellforsch. Mikrosk. Anat. 106:584–614.ADSGoogle Scholar
  45. Hepler, P. K., and Jackson, W. T. 1968. Microtubules and early stages of cell-plate formation in the endosperm of Haemanthus katherinae Baker. J. Cell Biol. 38:437–446.Google Scholar
  46. Hepler, P. K., and Palevitz, B. A. 1974. Microtubules and microfilaments. Annu. Rev. Plant Physiol. 25:309–362.Google Scholar
  47. Heslop, J. P. 1974. Fast transport along nerves. Symp. Soc. Exp. Biol. 28:209–227.Google Scholar
  48. Heslop, J. P., and Howes, E. A. 1972. Temperature and inhibitor effects on fast axonal transport in a molluscan nerve. J. Neurochem. 19:1709–1716.Google Scholar
  49. Hiramoto, Y. 1955. Nature of the perivitelline space in sea urchin eggs. Jpn. J. Zool. 11:333–344.Google Scholar
  50. Holt, P. A., and Corliss, J. O. 1973. Pattern variability in microtubular arrays associated with the tentacles of Actinobolina (Ciliata: Gymnostomatida). J. Cell Biol. 58:213–219.Google Scholar
  51. Holt, P. A., Lynn, D. H., and Corliss, J. O. 1973. An ultrastructural study of the tentacle-bearing ciliate Actinobolina smalli, n. sp., and its systematic and phylogenetic implications. Protistology 9:521–541.Google Scholar
  52. Hull, R. W. 1961. Studies on suctorian protozoa: The mechanism of ingestion of prey cytoplasm. J. Protozool. 8:351–359.Google Scholar
  53. Huxley, H. E. 1969. The mechanism of muscular contraction. Science 164:1356–1366.ADSGoogle Scholar
  54. Hyams, J. S., and Stebbings, H. 1977. The distribution and function of microtubules in nutritive tubes. Tissue Cell 9:537–545.Google Scholar
  55. Hyams, J. S., and Stebbings, H. 1979. The mechanism of microtubule associated cytoplasmic transport. Cell Tissue Res. 196:103–116.Google Scholar
  56. Ishikawa, H., Bischoff, R., and Holtzer, H. 1969. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J. Cell Biol. 43:311–316.Google Scholar
  57. Iwanami, Y. 1956. Protoplasmic movement in pollen grains and tubes. Phytomorphology 6:288–295.Google Scholar
  58. Jahn, T. L., and Votta, J. J. 1972. Capillary suction test of the pressure gradient theory of amoeboid motion. Science 177:636–637.ADSGoogle Scholar
  59. Jahn, T. L., Bovee, E. C., and Small, E. B. 1960. The basis for a new major dichotomy of the Sarcodina. J. Protozool. 7(Suppl.):8.Google Scholar
  60. Johnson, R. P. C. 1968. Microfilaments in pores between frozen etched sieve elements. Planta 81:314–332.Google Scholar
  61. Jurand, A., and Bomford, R. 1965. The fine structure of the parasitic suctorian Podophrya parameciorum. J. Microsc. (Paris) 4:509–522.Google Scholar
  62. Kamiya, N. 1959. Protoplasmic streaming. Protoplasmatologia 8(3a): 1–199.MathSciNetGoogle Scholar
  63. Kamiya, N. 1962. Cytoplasmic streaming. Encycl. Plant Physiol. 17(2):979–1035.Google Scholar
  64. Kamiya, N. 1964. The motive force of endoplasmic streaming in the amoeba. In: Allen, R. D., and Kamiya, N., eds., Primitive Motile Systems in Cell Biology, New York, Academic Press, pp. 257–278.Google Scholar
  65. Kamiya, N., and Kuroda, K. 1956. Velocity distribution of the protoplasmic streaming in Nitella cell. Bot. Mag. 69:544–554.Google Scholar
  66. Kamiya, N., and Kuroda, K. 1973. Dynamics of cytoplasmic streaming in a plant cell. Biorheology 10:179–187.Google Scholar
  67. Katsumoto, T., Takayama, H., and Takagi, A. 1978. Ultrastructural organization of cultured macrophages as shown by negative staining techniques. J. Electron Microsc. 27:1–12.Google Scholar
  68. Kersey, Y. M., Hepler, P. K., Palevitz, B. A. and Wessels, N. K. 1976. Polarity of actin filaments in characean algae. Proc. Natl. Acad. Sci. USA 73:165–167.ADSGoogle Scholar
  69. Kidd, P., Schatten, G., Grainger, J., and Mazia, D. 1976. Microfilaments in the sea urchin egg at fertilization. Biophys. J. 16:117a.Google Scholar
  70. Koppenhöfer, E., Ode, A., Rimmel, C., Schramm, M., Schuback, P., and Schumann, H. 1977. Isolated Nitella protoplasm is not excitable. J. Theor. Biol. 68:449–451.Google Scholar
  71. Kristensson, K. 1970. Morphological studies of the neural spread of herpes simplex virus to the central nervous system. Acta Neuropathol. 16:54–63.Google Scholar
  72. Kumagaya, S. 1950. Cytoplasmic streaming in pollen grains. Bot. Mag. 63:52.Google Scholar
  73. Lewis, W. H., and Lewis, M. R. 1924. Behavior of cells in tissue cultures. In: Cowdry, E. V., ed., General Cytology, Chicago, University of Chicago Press, pp. 385–447.Google Scholar
  74. Linsbauer, K. 1929. Untersuchungen über Plasma und Plasmaströmung an Chara Zellen. Protoplasma 5:563–621.Google Scholar
  75. Lushbaugh, W. V., and Pittman, F. L. 1979. Microscopic observations on the filopodia of Entamoeba histolytica. J. Protozool. 26:186–195.Google Scholar
  76. McGee-Russell, S. M. 1974. Dynamic activities and labile microtubules in cytoplasmic transport in the marine foraminiferan Allogromia. Symp. Soc. Exp. Biol. 28:157–190.Google Scholar
  77. Macgregor, H. C., and Stebbings, H. 1970. A massive system of microtubules associated with cytoplasmic movement in telotrophic ovarioles. J. Cell Sci. 6:431–449.Google Scholar
  78. MacRobbie, E. A. C. 1971. Phloem translocation: Facts and mechanisms, a comparative survey. Biol. Rev. 46:429–482.Google Scholar
  79. Mann, S., Schatten, G., Steinhardt, R., and Friend, D. S. 1976. Sea urchin sperm: oocyte interaction. J. Cell Biol. 70:110a.Google Scholar
  80. Marsot, P., and Couillard, P. 1978. La réaction phygocytaire chez Amoeba proteus. II. Phagocytose de particules non-vivantes. Can. J. Zool. 56:1497–1506.Google Scholar
  81. Mast, S. O. 1926. Structure, movement, locomotion, and stimulation in Amoeba. J. Morphol. Physiol. 41:347–425.Google Scholar
  82. Mast, S. O. 1931. Locomotion in Amoeba proteus (Leidy). Protoplasma 14:321–330.MathSciNetGoogle Scholar
  83. Meyer, K. H. 1929. Über Feinbau, Festigkeit und Kontraktilität tierischer Gewebe. Biochem. Z. 214:253–281.Google Scholar
  84. Monné, L. 1948. Functioning of the cytoplasm. Adv. Enzymol. 8:1–69.Google Scholar
  85. Mooseker, M. S. 1976. Brush border motility. J. Cell Biol. 71:417–433.Google Scholar
  86. Mooseker, M. S., and Tilney, L. G. 1975. Organization of an actin filament-membrane complex. Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells. J. Cell Biol. 67:725–743.Google Scholar
  87. Mukherjee, T. M., and Staehelin, L. A. 1971. The fine-structural organisation of the brush border of intestinal epithelial cells. J. Cell Sci. 8:573–599.Google Scholar
  88. Murphy, D. B., and Tilney, L. G. 1974. The role of microtubules in the movement of pigment granules in teleost melanophores. J. Cell Biol. 61:757–779.Google Scholar
  89. Nachmias, V. T., and Asch, A. 1976. Regulation and polarity: Results with myxomycete plasmodium and with human platelets. In: Goldman, R., Pollard, T., and Rosenbaum, J., eds., Cell Motility, Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory, Book B, pp. 771–783.Google Scholar
  90. Nachmias, V. T., Sullender, J., and Asch, A. 1977. Shape and cytoplasmic filaments in control and lidocaine-treated human platelets. Blood 50:39–53.Google Scholar
  91. Nagai, R., and Hayama, T. 1979. Ultrastructure of the endoplasmic factor responsible for cytoplasmic streaming in Chara internodal cells. J. Cell Sci. 36:121–136.Google Scholar
  92. Nagai, R., and Rebhun, L. I. 1966. Cytoplasmic microfilaments in streaming Nitella cells. J. Ultrastruct. Res. 14:571–589.Google Scholar
  93. Nowakowska, G., and Grebecki, A., 1978. Attachment of Amoeba proteus to the substrate during upside-down crawling. Acta Protozool. 17:361–368.Google Scholar
  94. Ochs, S., 1972. Fast transport of materials in mammalian nerve fibers. Science 176:252–260.ADSGoogle Scholar
  95. Oplatka, A., and Tirosh, R. 1973. Active streaming in actomyosin solutions. Biochim. Biophys. Acta 305:684–688.Google Scholar
  96. Otto, J. J., Kane, R. E., and Bryan, J. 1979. Formation of filopodia in coelomocytes: Localization of fascin, a 58,000 dalton actin cross-linking protein. Cell 17:285–293.Google Scholar
  97. Palevitz, B. A. 1976. Actin cables and cytoplasmic streaming in green plants. In: Goldman, R., Pollard, T., and Rosenbaum, J., eds., Cell Motility, Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory, Book B, pp. 601–611.Google Scholar
  98. Palevitz, B. A., and Hepler, P. K. 1975. Identification of actin in situ at the ectoplasm-endoplasm interface of Nitella. J. Cell Biol. 65:29–38.Google Scholar
  99. Palevitz, B. A., Ash, J. F., and Hepler, P. K. 1974. Actin in the green alga, Nitella. Proc. Natl. Acad. Sci. USA 71:363–366.ADSGoogle Scholar
  100. Pantin, C. F. A. 1923. On the physiology of amoeboid movement. J. Mar. Biol. Assoc. U.K. 13:1–69.Google Scholar
  101. Pickard, W. F. 1974. Hydrodynamic aspects of protoplasmic streaming in Chara braunii. Protoplasma 82:321–339.Google Scholar
  102. Pickett-Heaps, J. D. 1967. Ultrastructure and differentiation in Chara sp. I. Vegetative cells. Aust. J. Biol. Sci. 20:539–551.Google Scholar
  103. Pitman, M. G. 1977. Ion transport into the xylem. Annu. Rev. Plant Physiol. 28:71–88.Google Scholar
  104. Podlubnaya, Z. A., Tskhovrebova, L. A., Zaalishvili, M. M., and Stefanenko, G. A. 1975. Electron microscopic study of α-actinin. J. Mol. Biol. 92:357–359.Google Scholar
  105. Pollard, T. D., and Weihing, R. R. 1974. Cytoplasmic actin and myosin and cell movement. CRC Crit. Rev. Biochem. 2:1–65.Google Scholar
  106. Preston, T. M., and King, C. A. 1978. An experimental study of the interaction between the soil amoeba Naegleria gruberi and a glass substrate during amoeboid locomotion. J. Cell Sci. 34:145–158.Google Scholar
  107. Rebhun, L. I. 1964. Saltatory particle movements in cells. In: Allen, R. D., and Kamiya, N., eds., Primitive Motile Systems in Cell Biology, New York, Academic Press, pp. 503–525.Google Scholar
  108. Rebhun, L. I. 1972. Polarised intracellular particle transport. Saltatory movements and cytoplasmic streaming. Int. Rev. Cytol. 32:93–137.Google Scholar
  109. Robidaux, J., Sandborn, E. B., Fensom, D. S., and Cameron, M. L. 1973. Plasmatic filaments and particles in mature sieve elements of Heracleum spondylium under the electron microscope. J. Exp. Bot. 24:349–359.Google Scholar
  110. Rodewald, R., Newman, S. B., and Karnovsky, M. J. 1976. Contraction of isolated brush borders from the intestinal epithelium. J. Cell Biol. 70:541–554.Google Scholar
  111. Rudzinska, M. A. 1970. The mechanism of food intake in Tokophrya infusionum and ultra-structural changes in food vacuoles during digestion. J. Protozool. 17:626–641.Google Scholar
  112. Rudzinska, M. A. 1973. Do Suctoria really feed by suction? BioScience 23:87–94.Google Scholar
  113. Sabnis, D. D., and Jacobs, W. P. 1967. Cytoplasmic streaming and microtubules in the coenocytic marine alga, Caulerpa prolifera. J. Cell Sci. 2:465–472.Google Scholar
  114. Schliwa, M. 1975. Microtubule distribution and melanosome movements in fish melanophores. In: Borgers, M., and De Brabander, M., eds., Microtubules and Microtubule Inhibitors, Amsterdam, North-Holland, pp. 215–228.Google Scholar
  115. Seifriz, W. 1929. The contractility of protoplasm. Am. Nat. 63:410–434.Google Scholar
  116. Seifriz, W. 1943 Protoplasmic streaming. Bot. Rev. 9:49–123.Google Scholar
  117. Seifriz, W. 1952. The rheological properties of protoplasm. In: Frey-Wyssling, A., ed., Deformation and Flow in Biological Systems, Amsterdam, North-Holland, pp. 3–156.Google Scholar
  118. Spudich, J. A., and Amos, L. A. 1979. Structure of actin filament bundles from microvilli of sea urchin eggs. J. Mol. Biol. 129:319–331.Google Scholar
  119. Szamier, P. M., Pollard, T. D., and Fujiwara, K. J. 1975. Tropomyosin prevents the destruction of actin filaments by osmium. J. Cell Biol. 67:424a.Google Scholar
  120. Taylor, A. C. 1966. Microtubules in the microspikes and cortical cytoplasma of isolated cells. J. Cell Biol. 28:155–168.Google Scholar
  121. Taylor, A. C., and Robbins, E. 1963. Observations on microextensions from the surface of isolated vertebrate cells. Dev. Biol. 7:660–673.Google Scholar
  122. Taylor, D. L., and Wang, Y. L. 1978. Molecular cytochemistry: Incorporation of fluorescently labeled actin in living cells. Proc. Natl. Acad. Sci. USA 75:857–861.ADSGoogle Scholar
  123. Taylor, D. L., Rhodes, J. A., and Hammond, S. A. 1976. The contractile basis of amoeboid movement. II. Structure and contractility of motile extracts and plasmalemma-ectoplasm ghosts. J. Cell Biol. 70:123–143.Google Scholar
  124. Thaine, R. 1961. Transcellular strands and particle movement in mature sieve tubes. Nature (London) 192:772–773.ADSGoogle Scholar
  125. Thaine, R. 1969. Movement of sugars through plants by cytoplasmic pumping. Nature (London) 222:873–875.ADSGoogle Scholar
  126. Tilney, L. G. 1977. Actin: Its association with membranes and the regulation of its polymerization. In: Brinkley, B. R., and Porter, K. R., eds., International Cell Biology, 1976–1977, New York, Rockefeller University Press, pp. 388–402.Google Scholar
  127. Tilney, L. G., and Cardell, R. R. 1970. Factors controlling the reassembly of the microvillus border of the small intestine of the salamander. J. Cell Biol. 47:408–422.Google Scholar
  128. Tilney, L. G., and Mooseker, M. S. 1971. Actin in the brush border of epithelial cells of the chicken intestine. Proc. Natl. Acad. Sci. USA 68:2611–2615.ADSGoogle Scholar
  129. Tilney, L. G., and Mooseker, M. S. 1976. Actin filament-membrane attachment. Are membrane particles involved? J. Cell Biol. 71:402–416.Google Scholar
  130. Tucker, J. B. 1978. Endocytosis and streaming of highly gelated cytoplasm alongside rows of armbearing microtubules in the ciliate Nassula. J. Cell Sci. 29:213–232.Google Scholar
  131. Tyree, M. T. 1970. The symplast concept. A general theory of symplastic transport according to the thermodynamics of irreversible processes. J. Theor. Biol. 26:181–214.Google Scholar
  132. Tyree, M. T., Fisher, R. A., and Dainty, J. 1974. A quantitative investigation of symplastic transport in Chara corallina. II. The symplastic transport of chloride. Can. J. Bot. 52:1325–1334.Google Scholar
  133. Wang, E., and Goldman, R. D. 1978. Functions of cytoplasmic fibers in intracellular movements in BHK-21 cells. J. Cell Biol. 79:708–726.Google Scholar
  134. Ward, P. A., and Becker, E. L. 1977. Biology of leukotaxis. Rev. Physiol. Biochem. Pharmacol. 77:125–148.Google Scholar
  135. Weiss, P. 1961. From cell to molecule. In: Allen, J. M., ed., The Molecular Control of Cellular Activity, New York, McGraw-Hill, pp. 1–72.Google Scholar
  136. Wellings, J. V., and Tucker, J. B. 1979. Changes in microtubule packing during the stretching of an extensible microtubule bundle in the ciliate Nassula. Cell Tiss. Res. 197:313–323.Google Scholar
  137. Williamson, R. E. 1974. Actin in the alga Chara corallina. Nature (London) 248:801–802.ADSGoogle Scholar
  138. Wohlman, A., and Allen, R. D. 1968. Structural organization associated with pseudopod extension and contraction during cell locomotion in Difflugia. J. Cell Sci. 3:105–114.Google Scholar
  139. Zeligs, J. D., and Wollman, S. H. 1977. Pseudopod behavior in hyperplastic thyroid follicles in vivo. J. Ultrastruct. Res. 60:99–105.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Lawrence S. Dillon
    • 1
  1. 1.Texas A & M UniversityCollege StationUSA

Personalised recommendations