Skip to main content

Abstract

The current status of thermodynamic models as applied to nuclear level densities is reviewed. Considerable refinement has taken place during the last fifteen years, with the result that some of the undesirable assumptions originally required by the model are no longer necessary. Some problems remain, however, particularly in calculating level densities for deformed nuclei. Furthermore, some related parameters, such as the positive-parity negative-parity ratio for levels and the spin cutoff parameter are more sensitive to the presence of two-body interactions than the total level density. Improvement in our characterization of nuclear level densities will require use of techniques which can incorporate the effects of two-body interactions in the level density calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. A. Bethe, Phys. Rev. 50, 332 (1936); Rev. Mod. Phys. 9, 69 (1937).

    Article  ADS  Google Scholar 

  2. N. Rosenzweig, Phys. Rev. 105, 950 (1957); Phys. Rev. 108, 817 (1957).

    Article  ADS  Google Scholar 

  3. P. B. Kahn and N. Rosenzweig, Phys. Lett. 22, 307 (1966).

    Article  ADS  Google Scholar 

  4. P. B. Kahn and N. Rosenzweig, Phys. Rev. 187, 1193 (1969).

    Article  ADS  Google Scholar 

  5. E. Gadioli, I. lori, N. Molho, and L. Zetta, Nucl. Phys. A138, 321 (1969).

    Article  Google Scholar 

  6. P. B. Kahn and N. Rosenzweig, J. Math Physics 10, 707 (1969).

    Article  ADS  Google Scholar 

  7. H. Baba, Nucl. Phys. A159, 625 (1970).

    Article  Google Scholar 

  8. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. M. Sano and S. Yamasaki, Prog. Theo. Phys. 29, 397 (1963).

    Article  ADS  Google Scholar 

  10. H. K. Vonach, R. Vandenbosch, and J. R. Huizenga, Nucl. Phys. 60, 70 (1964).

    Article  Google Scholar 

  11. D. W. Lang, Nucl. Phys. 42, 353 (1963).

    Article  MATH  Google Scholar 

  12. P. Decowski, W. Grochulski, A. Marcinkowski, K. Siwek, and Z. Wilhelmi, Nucl. Phys. A110, 129 (1968).

    Article  Google Scholar 

  13. L. G. Moretto, Nucl. Phys. A182, 641 (1972).

    Article  Google Scholar 

  14. L. G. Moretto, Nucl. Phys. A185, 145 (1972).

    Article  Google Scholar 

  15. A. N. Behkami and J. R. Huizenga, Nucl. Phys. A217, 78 (1973).

    Article  Google Scholar 

  16. S. M. Grimes, J. D. Anderson, J. W. McClure, B. A. Pohl and C. Wong, Phys. Rev. C10, 2373 (1974).

    ADS  Google Scholar 

  17. J. R. Huizenga and L. G. Moretto, Ann. Rev. Nucl. Sci. 22, 427 (1972).

    Article  ADS  Google Scholar 

  18. We follow the usual convention, which defines a level density as including all (2J + 1) degenerate states (different JZ values) only with a combined weight of 1, while the state density includes each of the (2J + 1) states individually (total weight 2J + 1).

    Google Scholar 

  19. A. Gilbert and A. G. W. Cameron, Can. J. Phys. 43, 1446 (1965).

    Article  ADS  Google Scholar 

  20. E. Gadioli and L. Zetta, Phys. Rev. 167, 1016 (1968).

    Article  ADS  Google Scholar 

  21. W. Dilg, W. Schantl, H. Vonach, and M. Uhl, Nucl. Phys. A217, 269 (1973).

    Article  Google Scholar 

  22. M. Beckerman, Nucl. Phys. A278, 333 (1977), Phys. Lett. 68B, 389 (1977).

    Google Scholar 

  23. J. R. Huizenga and A. A. Katsanos, Nucl. Phys. A98, 614 (1967).

    Article  Google Scholar 

  24. V. F. Weisskopf and D. H. Ewing, Phys. Rev. 57, 672 (1940).

    ADS  Google Scholar 

  25. W. Hauser and H. Feshbach, Phys. Rev. 87, 366 (1952); L. Wolfenstein, Phys. Rev. 82, 690 (1951).

    Google Scholar 

  26. C. C. Lu, L. C. Vaz and J. R. Huizenga, Nucl. Phys. A190, 229 (1972).

    Article  Google Scholar 

  27. S. G. Nilsson, K. Dan. Vid. Selsk. Mat-Fys. Medd. 23, No. 16 (1955).

    Google Scholar 

  28. P. Seeger and R. C. Perisho, Los Alamos Scientific Laboratory Report No. LA-3751 (1967).

    Google Scholar 

  29. J. R. Huizenga, A. M. Behkami, R. W. Atcher, J. S. Sventek, H. C. Britt, and H. Freiesleben, Nucl. Phys. A223, 589 (1974).

    Google Scholar 

  30. L. G. Moretto, Nucl. Phys. A182, 641 (1972).

    Article  Google Scholar 

  31. J. D. Moses, H. W. Newson, E. G. Bilpuch and G. E. Mitchell, Nucl. Phys. A175, 556 (1971).

    Article  Google Scholar 

  32. S. M. Grimes, unpublished.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Grimes, S.M. (1980). Limits Of Thermodynamic Models for Nuclear Level Densities. In: Dalton, B.J., Grimes, S.M., Vary, J.P., Williams, S.A. (eds) Theory and Applications of Moment Methods in Many-Fermion Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3120-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3120-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3122-3

  • Online ISBN: 978-1-4613-3120-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics