Infrared and Raman Study of Vibrational Relaxation in Liquids

  • S. Bratos

Abstract

The purpose of the present lecture course is to review infrared and spontaneous Raman studies of vibrational relaxation in liquids. This process is relative to internal degrees of freedom of a molecular liquid and is generated by a large variety of intermolecular forces, the dipole-dipole, dipole-induced dipole, dispersion, Pauli repulsion forces and hydrogen bonding. The relaxation due to the centrifugal or Coriolis forces is generally, although arbitrarily, separated from the present context and is studied in the theory of rotational relaxation. Vibrational relaxation originates either in de-excitation or in dephasing of molecular vibrations; these processes are called T1 and T2 processes, respectively, in agreement with the well known terminology of nuclear magnetic resonance. The remarkable analogy of relaxation processes in these two fields is due to the quantum-mechanical character of degrees of freedom involved. For earlier reviews of this field, see Bratos, Guissani and Leicknam (1) Bailey (2), Diestler (3) and Oxtoby (4).

Keywords

Iodine Exter Controled 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    S. Bratos, Y. Guissani, J. C. Leicknam, in Mol. Mot. in Liquids, ed. J. Lascombe, Reidel, Dordrecht, p. 187 (1974).Google Scholar
  2. (2).
    R.T. Bailey, Mol. Spectrosc. 2, 173 (1974).CrossRefGoogle Scholar
  3. (3).
    D.J. Diestler, Top. in Appl. Phys. 15, 169 (1976).CrossRefGoogle Scholar
  4. (4).
    D.W. Oxtoby, Adv. Chem. Phys., to be published.Google Scholar
  5. (5).
    R.G. Gordon, J. Chem. Phys. 43, 1307 (1965).CrossRefGoogle Scholar
  6. (6).
    R.G. Gordon, J. Chem. Phys. 42, 3658 (1965).CrossRefGoogle Scholar
  7. (7).
    R.G. Gordon, Adv. Mag. Reson. 3, 1 (1968).Google Scholar
  8. (8).
    L.D. Landau, E.M. Lifschitz, Electrodynamics of Continous Media, Pergamon, Oxford, p. 377 (1963).Google Scholar
  9. (9).
    S. Bratos, E. Maréchal, Phys. Rev. A 4, 1078 (1971).CrossRefGoogle Scholar
  10. (10).
    F.J. Bartoli, T.A. Litowitz, J. Chem. Phys. 56, 404 (1972).CrossRefGoogle Scholar
  11. (11).
    K.A, Valiev, Opt. Spectrosc. 11, 253 (1960).Google Scholar
  12. (12).
    K.A. Valiev, Soviet Phys. JETP 13, 1287 (1961).Google Scholar
  13. (13).
    S. Bratož, J. Rios, Y. Guissani, J. Chem. Phys. 52, 439 (1970).CrossRefGoogle Scholar
  14. (14).
    L.A. Nafie, W.L. Peticolas, J. Chem. Phys. 57, 3145 (1972).CrossRefGoogle Scholar
  15. (15).
    H. Morawitz, K. Eisenthal, J. Chem. Phys. 55, 887 (1971).CrossRefGoogle Scholar
  16. (16).
    E. Brindeau, S. Bratos, J.C. Leicknam, Phys. Rev. A 6, 2007 (1972).Google Scholar
  17. (17).
    P. Van Konynenburg, W.A. Steele, J. Chem. Phys. 56, 4776 (1972)CrossRefGoogle Scholar
  18. (18).
    D.J. Diestler, Chem. Phys. Lett. 39, 39 (1976).CrossRefGoogle Scholar
  19. (19).
    R. Paul, G.G. Fuller, J. Chem. Phys. 64, 3809 (1976).CrossRefGoogle Scholar
  20. (20).
    D.W. Oxtoby, S.A. Rice, Chem. Phys. Lett. 42, 1 (1976).CrossRefGoogle Scholar
  21. (21).
    J.C. Leicknam, Y. Guissani, S. Bratos, J. Chem. Phys. 68, 3380 (1978).CrossRefGoogle Scholar
  22. (22).
    S.F. Fischer, A. Laubereau, Chem. Phys. Lett. 35, 6 (1975).CrossRefGoogle Scholar
  23. (23).
    W.A. Rothschild, J. Chem. Phys. 65, 455 (1976).CrossRefGoogle Scholar
  24. (24).
    W.A. Rothschild, J. Chem. Phys. 65, 2958 (1976).CrossRefGoogle Scholar
  25. (25).
    R. Levant, Mol. Phys. 34, 629 (1977).CrossRefGoogle Scholar
  26. (26).
    F. G. Dijkman, J.H. Van der Maas, J. Chem. Phys. 66, 3871 (1977)CrossRefGoogle Scholar
  27. (27).
    D.J. Diestler, J. Manz, Mol. Phys. 33, 227 (1977).CrossRefGoogle Scholar
  28. (28).
    H. Metiu, D.W. Oxtoby, K.F. Freed, Phys. Rev. A 15, 361 (1977).CrossRefGoogle Scholar
  29. (29).
    S.S. Cohen, R.E. Wilde, J. Chem. Phys. 68, 1138 (1978).CrossRefGoogle Scholar
  30. (30).
    D.W. Oxtoby, J. Chem. Phys. 70, 2605 (1978).CrossRefGoogle Scholar
  31. (31).
    R. Arndt, R.E.D. Mac Clung, J. Chem. Phys. 69, 4280 (1978).Google Scholar
  32. (32).
    R.E. Wilde, S.S. Cohen, J. Chem. Phys. 70, 4557 (1979).CrossRefGoogle Scholar
  33. (33).
    M.R. Battaglia, P.A. Madden, Mol. Phys. 36, 1601 (1978).CrossRefGoogle Scholar
  34. (34).
    B.P. Hills, P.A. Madden, Mol. Phys. 37, 937 (1979).CrossRefGoogle Scholar
  35. (35).
    B. P. Hills, Mol. Phys. 37, 949 (1979).CrossRefGoogle Scholar
  36. (36).
    G. Döge, Z. Naturforsch. 28a, 919 (1973).Google Scholar
  37. (37).
    T. Tokuhiro, W.G. Rothschild, J. Chem. Phys. 62, 2150 (1975).CrossRefGoogle Scholar
  38. (38).
    P.C.M. Van Woerkom, J. de Beyser, M. de Zwart, J.C. Leyte, Chem. Phys. 4, 236 (1974).Google Scholar
  39. (39).
    P.A. Madden, R.M. Lynden-Bell, Chem. Phys. Lett. 38, 163 (1976)CrossRefGoogle Scholar
  40. (40).
    C. H. Wang, Mol. Phys. 33, 207 (1977).CrossRefGoogle Scholar
  41. (41).
    R.M. Lynden-Bell, Mol. Phys. 33, 907 (1977).CrossRefGoogle Scholar
  42. (42).
    R.M. Lynden-Bell, Mol. Phys. 36, 1529 (1978).CrossRefGoogle Scholar
  43. (43).
    D. W. Oxtoby, D. Levesque, J.J. Weis, J. Chem. Phys. 68, 5528 (1978).CrossRefGoogle Scholar
  44. (44).
    R.K. Wertheimer, Mol. Phys. 35, 257 (1978).CrossRefGoogle Scholar
  45. (45).
    R.K. Wertheimer, Mol. Phys. 36, 1631 (1978).CrossRefGoogle Scholar
  46. (46).
    D.C. Knauss, Mol. Phys. 36, 413 (1978).CrossRefGoogle Scholar
  47. (47).
    B.P. Hills, Mol. Phys. 35, 793 (1978).CrossRefGoogle Scholar
  48. (48).
    B.P. Hills, P.A. Madden, Mol. Phys. 35, 807 (1978).CrossRefGoogle Scholar
  49. (49).
    B.P. Hills, P.A. Madden, Mol. Phys. 35, 1471 (1978).CrossRefGoogle Scholar
  50. (50).
    R. Kubo, J. Phys. Soc. Jap. 17, 1100 (1962).CrossRefGoogle Scholar
  51. (51).
    N.G. Van Kampen, Physica (Utrecht) 74, 215 (1974).CrossRefGoogle Scholar
  52. (52).
    N.G. Van Kampen, Physica (Utrecht) 74, 239 (1974).CrossRefGoogle Scholar
  53. (53).
    C.B. Harris, R.M. Shelby, P.A. Cornelius, Phys. Rev. Letters 38, 1415 (1977).CrossRefGoogle Scholar
  54. (54).
    J.P. Riehl, D.J. Diestler, J. Chem. Phys. 64, 2593 (1976).CrossRefGoogle Scholar
  55. (55).
    K. Müller, F. Kneubühl, Chem. Phys. 8, 468 (1975).CrossRefGoogle Scholar
  56. (56).
    K. Müller, Chem. Phys. Lett. 40, 508 (1976).CrossRefGoogle Scholar
  57. (57).
    R.M. Lynden-Bell, Mol. Phys. 31, 1653 (1976).CrossRefGoogle Scholar
  58. (58).
    S. Bratos, J.P. Chestier, Phys. Rev. A 9, 2136 (1974).CrossRefGoogle Scholar
  59. (59).
    G.S. Landsberg, F.S. Baryshanskaia, Izvestia 10, 509 (1946).Google Scholar
  60. (60).
    B.I. Stepanov, Zhur. Fiz. Khim. 19, 507 (1945).Google Scholar
  61. (61).
    S. Bratož, D. Hadži, J. Chem. Phys. 27, 991 (1957).CrossRefGoogle Scholar
  62. (62).
    N. Sheppard, in Hydrogen Bonding, ed. D. Hadži, Pergamon, Oxford, p. 85 (1958).Google Scholar
  63. (63).
    R. Blinc, D. Hadzi, Mol. Phys. 1, 391 (1958).CrossRefGoogle Scholar
  64. (64).
    C. Sandorfy, in The Hydrogen Bond, ed. P. Schuster, G. Zundel, C. Sandorfy, North Holland, Amsterdam, p. 613 (1976).Google Scholar
  65. (65).
    Y. Maréchal, A. Witkowski, J. Chem. Phys. 48, 3697 (1968).CrossRefGoogle Scholar
  66. (66).
    A. Witkowski, M. Wojcik, Chem. Phys. 1, 916 (1973).CrossRefGoogle Scholar
  67. (67).
    S. Bratos, J. Chem. Phys. 63, 3499 (1975).CrossRefGoogle Scholar
  68. (68).
    J. Yarwood, G.N. Robertson, Nature 257, 41 (1975).CrossRefGoogle Scholar
  69. (69).
    J. Yarwood, R. Ackroyd and G.N. Robertson, Chemical Phys. 32, 283 (1978).CrossRefGoogle Scholar
  70. (70).
    G.N. Robertson, J. Yarwood, Chem. Phys. 32, 267 (1978).CrossRefGoogle Scholar
  71. (71).
    E. Marechal, S. Bratos, J. Chem. Phys. 68, 1825 (1978).CrossRefGoogle Scholar
  72. (72).
    N. Rösch, M.A. Ratner, J. Chem. Phys. 61, 3344 (1974).CrossRefGoogle Scholar
  73. (73).
    E.G. Weidemann, A. Hayd, J. Chem. Phys. 67, 3713 (1977).CrossRefGoogle Scholar
  74. (74).
    H. Romanowski, L. Sobczyk, Chem. Phys. 19, 361 (1977).CrossRefGoogle Scholar
  75. (75).
    C.A. Coulson, G.N. Robertson, Proc. Roy. Soc. A 337, 167 (1974) (1974).CrossRefGoogle Scholar
  76. (76).
    S. Bratos, H. Ratajczak, to be published.Google Scholar
  77. (77).
    J. Vincent, this volume.Google Scholar
  78. (78).
    G.C. Pimentel, A.L. Mc Cllelan, The Hydrogen Bond, Freeman, San Francisco, p. 67 (1960).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • S. Bratos
    • 1
  1. 1.Laboratoire de Physique Théorique des LiquidesUniversité Pierre et Marie CurieParisFrance

Personalised recommendations