Advertisement

Investigation of Crystal Field in PrNi5

  • A. Andreeff
  • H. Griesmann
  • L. P. Kaun
  • W. Matz
  • P. A. Alekseev
  • I. P. Sadikov
  • O. D. Chistyakov
  • I. A. Markova
  • E. M. Savitsky

Abstract

Recently intermetallic compounds of RNi5 type have been of interest to many research groups in connection with the application of LaNi5 based alloys in hydrogen technology (storage, purification of hydrogen, catalysis)1. One of the main features in most of the intermetallic compounds of the rare earth metals is the splitting of ground state multiplet of the rare earth ion by the interaction with the crystalline electric field (CEF). The number of levels and their degeneracy is determined by the symmetry of CEF which depends on the crystal structure, but a concrete level position and overall splitting depends on the form of electrical potential in metal. So CEF contains the direct information about the electronic structure of the material. In particular, one can study the effects of hydrogen absorption on the electrical potentials by investigating how absorbed hydrogen effects the CEF levels (in particular the ground state multiplet). In this connection a knowledge of CEF seems important to our understanding of the electronic structure of LaNi5.

Keywords

Crystal Field Inelastic Neutron Point Charge Model Hydrogen Technology Crystalline Electric Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.H. van Mai. Philips, Res. Rep. Suppl. (1976).Google Scholar
  2. 2.
    E. Segal, W.E. Wallace, J. Solid State Chem., 2, 347 (1970).CrossRefADSGoogle Scholar
  3. 3.
    P.G. de Gennes, In “Magnetism”, ed. G.I. Rado and H. Suhl, vol. iii, p. 115, Academic Press, New York, 1963.Google Scholar
  4. 4.
    J.H. Wernick, S. Geller, Acta Cryst., 12, 662 (1959).CrossRefGoogle Scholar
  5. 5.
    A. Andreeff, K. Walther, H. Griessman, L.P. Kaun, B. Lippold, W. Matz, T. Frauenheim. Communication JINR, P14 –11324, Dubna, (1978).Google Scholar
  6. 6.
    R.S. Craig, S.C. Sankar, N. Marzouk, V.U.S. Rao, W.E. Wallace, F.Segal, J. Phys. Chem. Solids, 33, 2267 (1972).CrossRefADSGoogle Scholar
  7. 7.
    H.R. Ott, K. Andres, E. Bucher, J.P. Maita, Solid State Com., 18, 9–10, 1303 (1976).CrossRefGoogle Scholar
  8. 8.
    P. Fischer, A. Furrer, G. Busch, L. Schlapbach, Hew. Phys. Acta, 50, 421 (1977).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • A. Andreeff
    • 1
  • H. Griesmann
    • 1
  • L. P. Kaun
    • 1
  • W. Matz
    • 1
  • P. A. Alekseev
    • 2
  • I. P. Sadikov
    • 2
  • O. D. Chistyakov
    • 3
  • I. A. Markova
    • 3
  • E. M. Savitsky
    • 3
  1. 1.Laboratory of Neutron PhysicsJoint Institute for Nuclear ResearchDubnaUSSR
  2. 2.I.V. Kurchatov Institute of Atomic EnergyMoscowUSSR
  3. 3.A.A. Baikov Institute of Metallurgy of the Academy of Sciences of the USSRUSSR

Personalised recommendations