Skip to main content

The Fluid Mechanical Problem of Fjord Circulations

  • Chapter
Fjord Oceanography

Part of the book series: NATO Conference Series ((MARS,volume 4))

Abstract

There are too many theoretical aspects of fluid mechanical research on fjords and estuaries to treat all of them in a single paper even if, contrary to present circumstances, the author could claim overall competence. So, we will treat in some detail the single topic of classical estuarine circulations in which, on the average, low-salinity water, originating from run-off, flows out to sea over salty water moving slowly into the estuary. There are many associated physical considerations but the basic mathematical problem is to solve the set of equations of conservation of momentum, salt and volume together with boundary conditions to yield the mean velocity and density distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Assaf, G., and A. Hecht. 1974. Sea straits: a dynamical model. Deep Sea Res., 21, 947–958.

    Google Scholar 

  • Anati, D.A., G. Assaf, and R. Thompson. 1977. Laboratory models of sea straits. J. Fluid Mech., 81, 341–351.

    Article  ADS  Google Scholar 

  • Baines, W.D. 1975. Entrainment by a plume or jet at a density interface. J. Fluid Mech., 68, 309–320.

    Article  ADS  Google Scholar 

  • Booker, J.R., and F.P. Bretherton. 1967. The critical layer for internal gravity waves in a shear flow. J. Fluid Mech., 27, 513–539.

    Article  ADS  MATH  Google Scholar 

  • Bouvard, M. and H. Dumas. 1967. Application de la methode de fil chaud a la oesure de la turbulence dans l’eau. Houllle Blanche, 22, 257–723.

    Article  Google Scholar 

  • Brush, L.M. 1970. Artificial mixing of stratified fluids formed by salt and heat in a laboratory reservoir. N.J. Mater Resources Res. Inst. Res. Project B-024.

    Google Scholar 

  • Caldwell, D.R., C.W. Van Atta, and K.N. Helland. 1972. A laboratory study of the turbulent Ekman layer. Geophy. Fluid Dyn.,3, 125–160.

    Article  ADS  Google Scholar 

  • Chern, C.-S., R.R. Long. 1980. A new theory of turbulent convection. In preparation.

    Google Scholar 

  • Connor, J.J. and J.D. Wang. 1974. Finite element model of two-layer coastal circulation. 14th Coastal Engineering Conference, Copenhagen.

    Google Scholar 

  • Crapper, P.F. 1973. An experimental study of mixing across density interfaces. Ph.D. thesis, University of Cambridge.

    Google Scholar 

  • Crapper, P.F., and P.F. Linden. 1974. The structure of turbulent density interfaces. J. Fluid Mech., 65, 45–63.

    Article  ADS  Google Scholar 

  • Cromwell, T. 1960. Pycnoclines created by mixing in an aquarium tank. J. Mar. Res., 18, 73–82.

    Google Scholar 

  • Csanady, G.T. 1967. Large scale motion in the Creat Lakes. J. Geophys. Res., 72, 4151–4162.

    Article  ADS  Google Scholar 

  • Csanady, G.T. 1968a. Wind-driven summer circulation in the Great Lakes. J. Geophys. Res., 73, 2579–2589.

    Article  ADS  Google Scholar 

  • Csanady, C.T. 1968b. Motions in a model Great Lake due to a suddenly imposed wind. J. Geophys. Res., 73, 6435–6447.

    Article  ADS  Google Scholar 

  • Dickinson, S.C., and R.R. Long. 1978. Laboratory study of the growth of a turbulent layer of fluid. Physics of Fluids 21, 10, 1698–1701.

    Article  Google Scholar 

  • Farmer, D. and J.D. Smith. 1978. Nonlinear internal waves in a fjord. Hydrodynamics of Estuaries and Fjords (Ed. J. Nihoul) Elsevier Oceanography Series No. 23, 465–494.

    Chapter  Google Scholar 

  • Fonselius, S.H. 1969. Hydrography of the Baltic deep basins III. Fishery Bd. of Sweden, Series Hydrography, No. 23, 97 pp.

    Google Scholar 

  • Freeland, H.J. 1979. The hydrography of Knight Inlet, B.C. in the light of Long’s model of fjord circulation. Proceedings of the Fjord Oceanographic Workshop, NATO, Sidney, B.C. Canada.

    Google Scholar 

  • Gade, H. 1970. Hydrographie investigations in the Oslofjord. A study of water circulations and exchange processes, Vols. I, II, III. Geophys. Inst., Univ. of Bergen. Norway.

    Google Scholar 

  • Gade, H., and E. Svendsen. 1978. Properties of the Robert R. Long model of estuarine circulation in fjords. Hydrodynamics of Estuaries and Fjords. (Ed. J. Nihoul). Elsevier Oceanography Series, No. 23.

    Google Scholar 

  • Gardner, G.B. and J. D. Smith. 1978. Turbulent mixing in a salt wedge estuary. Hydrodynamics of Estuaries and Fjords (Ed. J. Nihoul) Elsevier Oceanography Series No. 23, 79–106.

    Chapter  Google Scholar 

  • Hachey, H.B. 1934. Movements resulting from mixing of stratified waters. J. Biol. Bd. Canada, 1, 133–143.

    Article  Google Scholar 

  • Hansen, D.V., and M. Rattray, Jr. 1972. Estuarine circulation induced by diffusion. J. Mar. Res., 30, 281–294.

    Google Scholar 

  • Heidrick, T.R., S. Banerjee, and R.S. Azad. 1977. Experiments on the structure of turbulence in fully developed pipe flow, Part 2. A statistical procedure for identifying “bursts” in the wall layers and some characteristics of flow during bursting periods. J. Fluid Mech., 82, 705–723.

    Google Scholar 

  • Hinze, J.O. 1976. Turbulence, McGraw-Hill, N.Y.

    Google Scholar 

  • Hopfinger, E.J., and M.-A. Toly. 1976. Spatially decaying turbulence and its relation to mixing across density interfaces. J. Fluid Mech., 78, 155–175.

    Article  ADS  Google Scholar 

  • Hunt, J.C.R., and J.M.R. Graham. 1978. Free-stream turbulence near plane boundaries. J. Fluid Mech., 84, 209–235.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kaimal, J.C. 1978. Horizontal velocity spectra in an unstable surface layer. J. Ataos. Sci., 35, 18–23.

    Article  ADS  Google Scholar 

  • Kantha, L. H.,O.M. Phillips, and R.S. Azad. 1977. On turbulent entrainment at a stable density interface. J. Fluid Mech. 79, 753–768.

    Google Scholar 

  • Kantha, L.H. 1979a. Turbulent entrainment at a buoyancy interface due to convective turbulence. Proceedings of NATO Fjord Oceanographic Workshop, Sidney, B.C. Canada.

    Google Scholar 

  • Kantha, L.H. 1979b. Experimental simulation of the retreat of the thermocline by surface heating. Proceedings of NATO Fjord Oceanographic Workshop, Sidney, B.C., Canada.

    Google Scholar 

  • Kantha, L.H. and R.R. Long. 1979. Turbulent mixing with stabilizing surface buoyancy flux. Submitted to J. Fluid Mech.

    Google Scholar 

  • Kantha, L.H. and R.R. Long. 1980. The depth of a mixed layer in an oscillating grid experiment. In Preparation.

    Google Scholar 

  • Kato, H., and O.M. Phillips. 1969. On the penetration of a turbulent layer into a stratified fluid. J. Fluid Mech., 37, 643–655.

    Article  ADS  Google Scholar 

  • Kraichnan, R.H. 1974. On Kolmogorov’s inertial-range theories. J. Fluid Mech. 62, 305–330.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kraus, E.B., and J.S. Turner. 1967. A one-diraensional model of the seasonal thermocline. II. The general theory and its consequences. Tellus 19, 98–106.

    Article  ADS  Google Scholar 

  • Kreider, J.F., 1973. A laboratory study of the turbulent Ekman layer. Ph.D. dissertation. Univ. of Colorado.

    Google Scholar 

  • Kullenberg, C. 1971. Vertical diffusion in shallow waters. Tellus 23, 129–135.

    Article  ADS  Google Scholar 

  • Kuo, A., and S. Corrsin. 1971. Experiments on the geometry of the fine-structure distribution functions in fully turbulent fluid. J. Fluid Mech., 50, 285–319.

    Article  ADS  Google Scholar 

  • Kuo, A.Y. and S. Corrsin. 1972. Experiment on the geometry of the fine-structure regions in fully turbulent flow. J. Fluid Mech., 56, 447–479.

    Article  ADS  Google Scholar 

  • Laufer, J. 1954. The structure of turbulence in fully developed pipe flow. Natl. Advis. Conm. Aeronaut., Rep. 1174.

    Google Scholar 

  • Linden, P.F. 1973. The interaction of a vortex ring with a sharp density interface: A model for turbulent entrainment. J. Fluid Mech. 60, 467–480.

    Google Scholar 

  • Linden, P.F. 1975. The deepening of a mixed layer in a stratified fluid. J. Fluid Mech. 71, 385–405.

    Article  ADS  Google Scholar 

  • Long, R.R. 1975a. The influence of shear on mixing across density interface. J. Fluid Mech. 70, 305–320.

    Google Scholar 

  • Long, R.R. 1975b. On the depth of the halocline in an estuary. J. Phys. Oceanogr. 5, 551–554.

    Google Scholar 

  • Long, R.R. 1975c. Circulations and density distributions in a deep, strongly stratified, two-layer estuary. J. Fluid Mech., 71, 529–40.

    Article  ADS  MATH  Google Scholar 

  • Long, R.R. 1976a. Mass and salt transfers and halocline depths in an estuary. Tellus, 28, 460–472.

    Article  ADS  Google Scholar 

  • Long, R.R. 1976b. Lectures on Estuarine Circulations and Mass Distributions. Tech. Rep. No. 9 (series C), Department of Earth & Planetary Sciences, The Johns Hopkins University.

    Google Scholar 

  • Long, R.R. 1977a. Some aspects of turbulence in geophysical systems. Adv. Appl. Mech., Volume 17, Academic Press, N.Y.

    Google Scholar 

  • Long, R.R. 1977b. Three-layer circulations in estuaries and harbors. J. Phys. Oceanogr., 7, 415–421.

    Article  ADS  Google Scholar 

  • Long, R.R. 1978a. A theory of mixing in a stably stratified fluid. J. Fluid Mech. 84, 113–124.

    Google Scholar 

  • Long, R.R. 1978b. The growth of the mixed layer in 3 turbulent stably stratified fluid. GAFD, 11, 1–11.

    Article  MATH  Google Scholar 

  • Long, R.R. 1978c. The decay of turbulence. Tech. Rep. No. 13 (series C), Dept. of Earth & Planetary Sciences, The Johns Hopkins Univ.

    Google Scholar 

  • Long, R.R. 1978d. Theory of turbulence in a homogeneous fluid induced by an oscillating grid. Physics of Fluids, 21, 1887–1888.

    Article  ADS  MATH  Google Scholar 

  • Long, R.R. 1979a. A theory for portions of the energy spectrum and for intermittency of fine-scale turbulence. Proceedings 2nd Symposium on Turbulent Shear Flows. Also available as Tech. Rep. No. 15 (series C), Department of Earth & Planetary Sciences, The Johns Hopkins University.

    Google Scholar 

  • Long, R.R. 1979b. A new theory of turbulent shear flow. Submitted to J. Fluid Mech.

    Google Scholar 

  • Long, R.R. 1979c. A new theory of the neutral planetary boundary layer. Submitted to J. Fluid Mech.

    Google Scholar 

  • Long, R.R., and L.H. Kantha. 1978. The rise of a strong inversion caused by heating at the ground. Proceedings of Twelfth Symposium on Naval Hydrodynamics, Vol. VII-VIII, Washington, D.C.

    Google Scholar 

  • Long, R.R., and L.H. Kantha. 1979a. On the depth of a mixed layer under a surface stress and stabilizing surface buoyancy flux. Submitted to J. Fluid Mech.

    Google Scholar 

  • Long, R.R., and L. H. Kantha. 1979b. Experiments on penetrative convection. In Preparation.

    Google Scholar 

  • Malkus, W.V.R. 1979. Turbulent velocity profiles from stability criteria. J. Fluid Mech., 90, 401–414.

    Article  ADS  MATH  Google Scholar 

  • Mitchell, J.E., and T.J. Hanratty. 1966. A study of turbulence at a wall using an electrochemical wall shear-stress meter. J. Fluid Mech., 26, 199–221.

    Article  ADS  Google Scholar 

  • Monin, A.S., and A. M. Yaglom. 1971. Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. 1. MIT Press, Cambridge, Mass.

    Google Scholar 

  • Monin, A.S., and A. M. Yaglom. 1971. Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. 1. MIT Press, Cambridge, Mass.

    Google Scholar 

  • Ottesen-Hansen, N.-F., 1975. Entrainment in two-layer flow. Series Paper 7, Institute of Hydrodynamics and Hydraulic Engineering, Tech. Univ. Denmark. 97 pp.

    Google Scholar 

  • Monin, A.S., and A. M. Yaglom. 1971. Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. 1. MIT Press, Cambridge, Mass.

    Google Scholar 

  • Pearson, C.E. and D.F. Winter. Two-layer analysis of steady circulation in stratified fjords. Hydrodynamics of Estuaries and Fjords. (Ed. J. Nihoul) Elsevier Oceanographic Series, 23.

    Google Scholar 

  • Pedersen, Fl. B., 1972a. Gradually varying two-layer stratified flow in fjords. Intern. Syropos. on Stratified Flows., Paper No. 19, Novosibirsk, 413–429.

    Google Scholar 

  • Pedersen, Fl. B. 1972b. Gradually varying two-layer stratified flow. ASCE J. Hydraulic Div. 98, No. HY1.

    Google Scholar 

  • Pedersen, Fl. B. 1978. A brief review of present theories of fjord dynamics. Hydrodynamics of Estuaries and Fjords. (Ed. J. Nihoul) Elsevier Oceanographic Series. 23.

    Google Scholar 

  • Perels, P.A.J., and M. Karelse. 1978. A two-dimensional numerical model for salt intrusion. Hydrodynamics of Estuaries and Fjords. (E. J. Nihoul ). Elsevier Oceanographic Series 23.

    Google Scholar 

  • Perkins, R.C., and E.L. Lewis. 1978. Mixing in an arctic fjord. J. Phys. Oceanogr. 8, 873–880.

    Google Scholar 

  • Pickard, G.L. and K. Rodgers. 1959. Current measurements in Knight Inlet, British Columbia, J. Fish Res Bd of Canada, 18, 635–678.

    Article  Google Scholar 

  • Pickard, G.L. 1961. Oceanographic features of inlets in the British Columbia mainland coast. J. Fish. Res. Bd. of Canada, 18 (6), 907–999.

    Article  Google Scholar 

  • Pritchard, D.W. 1952. Salinity distribution and circulation in the Chesapeake Bay estuarine system. J. Mar. Res. 11, 106–123.

    Google Scholar 

  • Rao, K.N., R. Narasimha, and M.A. Badri Narayanan. 1971. The “bursting” phenomenon in a turbulent boundary layer. J. Fluid Mech., 48, 339–352.

    Article  ADS  Google Scholar 

  • Rattray, M., Jr. and D.V. Hansen. 1965. Gravitational circulation in straits and estuaries. J. Mar. Res., 23, (2), 104–122.

    Google Scholar 

  • Rattray, M., Jr. 1967. Some aspects of the dynamics of circulations in fjords. Estuaries (Ed. G.H. Lauff) 52–62, AAAC, Washington, D.C.

    Google Scholar 

  • Rousse, H., and J. Dodu. 1955. Turbulent diffusion across a density discontinuity. Houille Blanche 10, 405–410.

    Google Scholar 

  • Rydberg, L. 1975. Hydrographie observations in the Cullmarfjord during April 1973. Report No. 10, Göteborgs Universitet Oceanografiska Institutionen, Sweden.

    Google Scholar 

  • Schlichting, H. 1955. Boundary Layer Theory, McGraw-Hill, N.Y.

    MATH  Google Scholar 

  • Smith, J.D. 1974. Turbulent structure of the surface boundary layer in an ice-covered ocean. Rapp. P.-v. Reun. const, int. Mer., 53–65.

    Google Scholar 

  • Smith, J.D. 1979. Mixing induced by internal hydraulic disturbances in the vicinity of sills. Proceedings of the NATO Fjord Oceanographic Workshop, Sidney, B.C., Canada.

    Google Scholar 

  • Smith, R. 1976. Longitudinal dispersion of a buoyant contaminant in a shallow channel. J. Fluid Mech., 79, 677–688.

    Article  ADS  Google Scholar 

  • Smith, R. 1978. Coriolis curvature and buoyancy effects upon dispersion in a narrow channel. Hydrodynamics of Estuaries and Fjords. (E.d. J. Nihoul) Elsevier Oceanographic Series 23.

    Google Scholar 

  • Stigebrandt, A. 1976. Vertical diffusion driven by internal waves in a sill fjord. J. Phys. Oceanogr. 6, 486–495.

    Google Scholar 

  • Stigebrandt, A. 1979. Observational evidence for vertical diffusion driven by internal waves of tidal origin in the Oslofjord. J. Phys. Oceanogr. 9, 438–441.

    Article  ADS  Google Scholar 

  • Stommel, H. 1951. Recent development in the study of tidal estuaries. WHOI Tech. Rep. Ref. No. 51–33, Woods Hole Oceanographic Inst., Woods Hole, Mass.

    Google Scholar 

  • S tommel, H. and H. G. Farmer. 1952. Abrupt change in width in a two-layer open channel flow. J. Mar. Res., 11, 205–214.

    Google Scholar 

  • Stonrnel, H. and H.G. Farmer. 1953. Control of salinity in an estuary by a transition. J. Mar. Res., 12, 13–20.

    Google Scholar 

  • Stroup, E.D., D.W. Pritchard, and J.H. Carpenter. 1961. Final Report Baltimore Harbor Study, Tech. Rep. Rep. 26, Chesapeake Bay Institute, The Johns Hopkins University.

    Google Scholar 

  • Tennekes, H., and J.L. Lumley. 1972. A First Course in Turbulence. MIT Press, Cambridge, Mass.

    Google Scholar 

  • Thomas, N.H., and D.E. Hancock. 1977. Grid turbulence near a moving wall. J. Fluid Mech., 82, 481–496.

    Article  ADS  Google Scholar 

  • Thompson, S.M., and J.S. Turner. 1975. Mixing across an interface due to turbulence generated by an oscillating grid. J. Fluid Mech., 67, 349–368.

    Google Scholar 

  • Tritton, D.J. 1967. Some new correlation measurements in a turbulent boundary layer. J. Fluid Mech., 28, 803–821.

    Article  Google Scholar 

  • Turner, J.S. 1968. The influence of molecular diffusivity on turbulent entrainment across a density interface. J. Fluid Mech. 33, 639–656.

    Google Scholar 

  • Ueda, H., and J.O. Hinze. 1975. Fine-structure turbulence in the wall region of a turbulent boundary layer. J. Fluid Mech., 67, 125–143.

    Article  ADS  Google Scholar 

  • Uzkan, T., and W.C. Reynolds. 1967. A shear-free turbulent boundary layer. J. Fluid mech., 28, 803–821.

    Article  ADS  Google Scholar 

  • Walin, G. 1972a. On the hydrographlc response to transient meteorological disturbances. Tellus, 24, 169–186.

    Article  ADS  Google Scholar 

  • Walin, G. 1972b. Some observations of temperature fluctuations in the coastal region of the Baltic. Tellus, 24, 187–198.

    Article  ADS  Google Scholar 

  • Winter, D.F. 1972. A similarity solution for circulation in stratified fjords. Intern. Symp. on Stratified Flows. Novosibirsk. 715–724.

    Google Scholar 

  • Winter, D.F. 1973. A similarity solution for steady state gravitational circulation in fjords. Estuarine and Coastal Marine Science. 1, 387–400.

    Article  Google Scholar 

  • Wolanski, E.J. 1972. Turbulent entrainment across stable densitystratified liquids and suspensions. Ph.D. thesis, The Johns Hopkins University.

    Google Scholar 

  • Wolanski, E.J. and L.M. Brush. 1975. Turbulent entrainment across stable density step structures. Tellus, 27, 259–268.

    Article  ADS  Google Scholar 

  • Woods, J.D. 1968. Wave-induced shear instability in the summer thermocline. J. Fluid Mech., 32, 792–800.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Long, R.R. (1980). The Fluid Mechanical Problem of Fjord Circulations. In: Freeland, H.J., Farmer, D.M., Levings, C.D. (eds) Fjord Oceanography. NATO Conference Series, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3105-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3105-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3107-0

  • Online ISBN: 978-1-4613-3105-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics