Abstract

In the same way that a relativistic field theory is a field theory based on the Poincare algebra, a supersymmetric theory is a field theory based on the supersymmetry algebra
$$\begin{array}{l} {\left\{ {{Q_\alpha },{{\bar Q}_\beta }} \right\}_ + } = 2i\gamma _{\alpha \beta }^m{P_m}\\ {\left[ {{P_m},{Q_\alpha }} \right]_ - } = 0\,\,,\,\,\,\,\,{\left[ {{P_m},{P_n}} \right]_ - } = 0\,\,\,\,. \end{array}$$
(1)
Pm is the energy momentum four vector, Qα is a Majorana spinor.

Keywords

Manifold Covariance Propa Ghost Exter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Wess and B. Zumino, Nucl. Phys. B70, 39 (1974); J. Iliopoulos and B. Zumino, Nucl. Phys. B76, 310 (1974).CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    S. Coleman and J. Mandula, Phys. Rev. 159, 1251 (1967).CrossRefMATHADSGoogle Scholar
  3. 3.
    S. Deser and B. Zumino, Phys. Lett. 62B, 335 (1976); D.Z. Freedman, P. van Nieuwenhuizen and S. Ferrara, Phys. Rev. D13, 3214 (1976).Google Scholar
  4. 4.
    M.T. Grisaru, P. van Nieuwenhuizen and J.A.M. Vermaseren, Phys. Rev. Lett. 37, 1662 (1976); P. van Nieuwenhuizen and J.A. Vermeseren, Phys. Lett 65B, 263 (1976) and Phys. Rev. D16, 768 (1977); S. Deser, J. Kay and K. Stelle, Phys. Rev. Lett. 38, 527 (1977); S. Deser and J. Kay, Phys. Lett. 76B, 400 (1978); J.G. Taylor, Proc. R. Soc. London A362, 493 (1978), and Talk given at the EPS Conference, Geneva, 1979.CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    R. Haag, J.T. Lopuszański and M. Sohnius, Nucl. Phys. B88, 257 (1975).CrossRefADSGoogle Scholar
  6. 6.
    H. Flanders, Differential Forms (Academic Press, 1963); J. Wess in Topics in Quantum Field Theory and Gauge Theories, ed. J.A. de Azcárraga, Lecture Notes in Physics 77 (Springer- Verlag, 1978 ).MATHGoogle Scholar
  7. 7.
    R. Grimm, M. Sohnius and J. Wess, Nucl. Phys. B133, 275 (1978).CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    J. Wess and B. Zumino, Phys. Lett. 66B, 361 (1977); R. Arnowitt, P. Nath and B. Zumino, Phys. Lett. 56B, 81 (1975); V.P. Akulov, D.V. Volkov and V.A. Soraka, JETP Letters 22, 396 (1975) (English 187); L. Brink, M. Gell-Mann, P. Ramond and J.H. Schwarz, Phys. Lett. 74B, 336 (1978).ADSMathSciNetGoogle Scholar
  9. 9.
    N. Dragon, R. Grimm and J. Wess, to be published.Google Scholar
  10. 10.
    N. Dragon, Z. Phys. C2, 29 (1979).ADSMathSciNetGoogle Scholar
  11. 11.
    S. James Gates Jr. and W. Siegel, preprint HUTP -79/A034.Google Scholar
  12. 12.
    R. Grimm, J. Wess and B. Zumino, Nucl. Phys. B152, 255 (1979).CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    J. Wess and B. Zumino, Phys. Lett. 79B, 394 (1978).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Julius Wess
    • 1
  1. 1.University of KarlsruheKarlsruheGerman Federal Republic

Personalised recommendations