Fracture Mechanics and Adherence of Viscoelastic Solids

  • D. Maugis
  • M. Barquins
Part of the Polymer Science and Technology book series (POLS, volume 12)

Abstract

Contact of two elastic solids is treated as a thermodynamic problem. It is shown that U = UE+US and UE = US+UP+US are thermo-dynamic potentials respectively for transformations at fixed grips and at fixed load conditions (UE, UP, US are the elastic, potential, interface energies). Equations giving the displacement δ and the strain energy release rate G as a function of the contact area A and the load P appear to be the equations of state of the system. Two bodies in contact on an area A are in equilibrium if G=w, where w is the thermodynamic (or Dupre’s) work of adhesion. This equilibrium is stable if ∂G/∂A is positive, unstable if negative. The quasistatic force of adherence is the load corresponding to ∂G/∂A = o. But equilibrium may be stable at fixed grips and unstable at fixed load, so that the quasistatic force of adherence may depend on the stiffness of the measuring apparatus. When G>w, the separation of the two bodies starts, and can be seen as the propagation of a crack in mode I. G-w is the force applied to unit length of crack; under this force, the crack takes a limiting speed v, which is a function of the temperature, and one can write
$$G - w = w\phi \left( {{a_T}v} \right).$$

The second term is the drag due to viscoelastic losses at the crack tip and is proportional to was proposed by Gent and Schultz, and Andrews and Kinloch. The function Φ is a characteristic of the material (most probably linked to the frequency dependence of E′ and E″, the real and imaginary part of the Young modulus) and is independent of the geometry and loading system. In this proposed formula surface properties and viscoelastic losses are clearly decoupled from elastic properties and loading conditions that appear in G. If Φ is known, this equation allows one to predict any feature such as kinetics of detachment at fixed load, fixed grips or fixed cross-head velocity δ. (This last point completely solves the problem of tackiness). The only hypotheses are that failure is an adhesive failure and that viscoelastic losses are limited to the crack tip; this last condition means that gross displacements must be elastic for G to be valid in kinetic phenomena.

Three geometries are investigated: adherence of punches, adherence of spheres and peeling. The variation of energies with area of contact is given, and the kinetics of crack propagation under various conditions is studied. Experiments on the adherence of polyurethane to glass confirm the theoretical predictions with a high precision.

Keywords

Entropy Enthalpy Rubber Brittle Polyurethane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Kendall, J. Phys. D; Appi. Phys. 4, 1186–95 (1971).ADSCrossRefGoogle Scholar
  2. 2.
    K.L. Johnson, K. Kendall and A.D. Roberts, Proc. R. Soc. Lond. A324 301–13 (1971).ADSCrossRefGoogle Scholar
  3. 3.
    K. Kendall, J. Phys. D; Appl. Phys. 5, 1782–7 (1973b).ADSCrossRefGoogle Scholar
  4. 4.
    K. Kendall, J. Phys. D; Appl. Phys. 8, 1449–52 (1975g).ADSCrossRefGoogle Scholar
  5. 5.
    K. Kendall, J. Phys. D; Appl. Phys. 8, 1722–32 (1975h).ADSCrossRefGoogle Scholar
  6. 6.
    K. Kendall, J. Phys. D; Appl. Phys. 8, 512–22 (1975c).ADSCrossRefGoogle Scholar
  7. 7.
    K. Kendall, Proc. Soc. Lond. A 344 287–302 (1975e).ADSCrossRefGoogle Scholar
  8. 8.
    K. Kendall, J. Adhesion 7, 137–40 (1975f).MathSciNetCrossRefGoogle Scholar
  9. 9.
    K. Kendall, Proc. R. Soc. Lond. A 341, 409–28 (1975a).ADSCrossRefGoogle Scholar
  10. 10.
    K. Kendall, J. Mat. Sc. 11, 638–44 (1976a).ADSCrossRefGoogle Scholar
  11. 11.
    K. Kendall, J. Mat. Sc. 11, 1263–6 (1976b).ADSCrossRefGoogle Scholar
  12. 12.
    K. Kendall, J. Mat. Sc. 11, 1267–9 (1976c).ADSCrossRefGoogle Scholar
  13. 13.
    K. Kendall, J. Mat. Sc. 10, 1011–4 (1975d).ADSCrossRefGoogle Scholar
  14. 14.
    J.R. Rice, “Fracture: An Advanced Treatise”, ed. H. Liebowitz (New York: Academic Press), Vol. 2, p. 191–311 (1968).Google Scholar
  15. 15.
    C. Huet, Ind. Minerale 3 128–41 (1973).Google Scholar
  16. 16.
    D. Maugis and M. Barquins, J. Phys. D: Appl. Phys. JM, 1989–2023 (1978b).Google Scholar
  17. 17.
    H.B. Callen, Thermodynamics (New York: John Wiley & Sons) (I960).Google Scholar
  18. 18.
    R. Courtel, D. Maugis and M. Barquins, Industrie Minerale 4, 137–43 (1977).Google Scholar
  19. 19.
    H.D. Bui, Mecanique de la rupture fragile ( Paris: Masson ) (1978).Google Scholar
  20. 20.
    J.D. Ferry, “Viscoelastic Properties of Polymers”, 2nd edition ( New York: John Wiley & Sons ) (1970).Google Scholar
  21. 21.
    D.H. Kaelble, J. Colloid Sc. 19, 413–24 (1964).CrossRefGoogle Scholar
  22. 22.
    D.H. Kaelble, J. Adhesion 1, 102–23 (1969).CrossRefGoogle Scholar
  23. 23.
    A.N. Gent and R.P. Petrich, Proc. Soc. Lond. A310, 433–48 (1969).ADSCrossRefGoogle Scholar
  24. 24.
    A.N. Gent, J. Polym. Sc. A-2 9, 283–94 (1971).Google Scholar
  25. 25.
    A.N. Gent and A.J. Kinloch, J. Polym. Sc. A-2 9, 659–68 (1971).Google Scholar
  26. 26.
    A.N. Gent and J. Schultz, J. Adhesion 3, 281–94 (1972).CrossRefGoogle Scholar
  27. 27.
    E.H. Andrews and A.J. Kinloch, Proc. R. Soc. Lond. A 332, 385–99 (1973).ADSCrossRefGoogle Scholar
  28. 28.
    M. Barquins and R. Courtel, Wear 32, 133–50 (1975).CrossRefGoogle Scholar
  29. 28.
    bis. A.D. Roberts and A.B. Othman, Wear 42, 119–33 (1977).CrossRefGoogle Scholar
  30. 29.
    M. Barquins, R. Courtel and D. Maugis, Eighth World Conference on Non-Destructive Testing, Cannes (France), Paper 4 B 11 (1976).Google Scholar
  31. 30.
    J. Boussinesq, “Application des Potentiels” (nouveau tirage), (Paris: Blanchard, 1885 (1969).Google Scholar
  32. 31.
    S. Way, J. Appl. Mech. ASME 7, 147–57 (1940).Google Scholar
  33. 31.
    bis. K. Kendall, J. Adhesion 5, 77–9 (1973a).CrossRefGoogle Scholar
  34. 32.
    J.P. Berry, J. Mech. Phys. Solids 8, 194–206 (1960).ADSMATHCrossRefGoogle Scholar
  35. 33.
    D. Maugis and M. Barquins, C.R. Acad. Sc. Paris B, 1–4 (1978a).Google Scholar
  36. 34.
    K.L. Johnson, “The Mechanics of the Contact Between Deformable Bodies”, eds. A.D. de Pater and J.J. Kalker (Delft: Delft UP), p. 26–40 (1975).Google Scholar
  37. 35.
    M. Barquins, D. Maugis and R. Courtel, C.R. Acad. Sc. Paris B 279. 565–8 (1974).Google Scholar
  38. 36.
    R.J. Good, J. Am. Chem. Soc. 74, 5041–2 (1952).CrossRefGoogle Scholar
  39. 37.
    G.A.D. Briggs and Briscoe, B.J., Phys. D: Appl. Phys. 22, 2453–66 (1977).ADSCrossRefGoogle Scholar
  40. 38.
    K.N.G. Fuller and D. Tabor, Proc. Soc. Lond. A 345, 327–42 (1975).ADSCrossRefGoogle Scholar
  41. 39.
    K.E. Easterling and A.R. Thölen, Acta Met. 20, 1001–8 (1972).CrossRefGoogle Scholar
  42. 40.
    A. Kohno and S. Hyodo, J. Phys. D: Appl. Phys. 7, 1243–6 (1974).ADSCrossRefGoogle Scholar
  43. 41.
    D. Maugis, G. Desalos-Andarelli, A. Heurtel and R. Courtel, ASLE Trans. 21, 1–19 (1978).Google Scholar
  44. 42.
    A.D. Roberts and A.G. Thomas, Wear 33, 45–64 (1975).CrossRefGoogle Scholar
  45. 43.
    N. Brunt, Rheologica Acta 1, 242–7 (1958).CrossRefGoogle Scholar
  46. 44.
    R.C. Drutowski, Trans. ASME; J. Lub. Techn. 91F, 732–7 (1969).CrossRefGoogle Scholar
  47. 45.
    K. Kendall, J. Adhesion 7, 55–72 (1975b).MathSciNetCrossRefGoogle Scholar
  48. 46.
    M. Barquins and D. Maugis, C.R. Acad. Sc. Paris B 125–8 (1977).Google Scholar
  49. 47.
    M. Barquins and D. Maugis, C.R. Acad. Sc. Paris B 287 57–60 (1978).Google Scholar
  50. 48.
    K. Kendall, Wear 33, 351–8 (1975i).CrossRefGoogle Scholar
  51. 49.
    D. Maugis and M. Barquins, C.R. Acad. Sc. Paris B 287 49–52 (1978c).Google Scholar
  52. 50.
    R.S. Rivlin, Paint Technol. 9, 215–6 (1944).Google Scholar
  53. 51.
    B.V. Deryagin and N.A. Krotova, Dokl. Akad. Nank SSSR 61, 849–52 (1948).Google Scholar
  54. 52.
    B.V. Deryagin and N.A. Krotova, Chem. Abstr. 43, 2842 (1949).Google Scholar
  55. 53.
    D. Maugis, Le Vide No. 186, 1–19 (1977).Google Scholar
  56. 54.
    D.A. Birch, J.T. Evans and J.R. White, J. Phys. D; Appl. Phys. 10, 2003–10 (1977).ADSCrossRefGoogle Scholar
  57. 55.
    A.D. Roberts, Rub. Chem. Tech. 52, 23–42 (1979).CrossRefGoogle Scholar
  58. 56.
    A.R. Savkoor and G.A.D. Briggs, Proc. R. Soc. Lond. A 356, 103–116 (1977).ADSMATHCrossRefGoogle Scholar
  59. 57.
    H.M. Pollock, D. Maugis and M. Barquins, Appl. Phys. Lett. 33, 789–9 (1978).ADSCrossRefGoogle Scholar
  60. 58.
    K.L. Johnson, Brit. J. Appl. Phys. 9, 199–200 (1958).ADSCrossRefGoogle Scholar

References

  1. a).
    B.V. Derjaguin, V.M Muller, Yu. P. Toporov, J. Colloid Interface Sci. 53, 314 (1975)CrossRefGoogle Scholar
  2. b).
    D. Tabor, J. Colloid Interface Sci. 58, 2 (1977); J. Colloid Interface Sci. 67, 380 (1978).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • D. Maugis
    • 1
  • M. Barquins
    • 1
  1. 1.Equipe de Recherche de Mecanique des SurfacesCNRSMeudonFrance

Personalised recommendations