Polyploidy pp 495-520 | Cite as

Polyploidy in Plants: Unsolved Problems and Prospects

  • G. Ledyard Stebbins
Part of the Basic Life Sciences book series (BLSC, volume 13)

Abstract

The papers that have been presented at the present synposium provide in themselves ample evidence that problems connected with Polyploidy are of prime importance for understanding the evolution not only of most plants, but also of many groups of animals. Although chromosome doubling as a tool for plant breeders has become much reduced in importance during recent years, its revival may become practical as more becomes known and understood about the reasons why this process has been of great importance for the origin of species in nature (1).

Keywords

Corn Europe Recombination Mold Cretaceous 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dewey, D.R., 1980, Some applications and misapplications of induced Polyploidy to plant breeding. This volume, p. 445.Google Scholar
  2. 2.
    Raven, P.H., Thompson, H.J., 1964, Haploidy and angiosperm evolution. Amer. Nat. 68: 251 - 252.CrossRefGoogle Scholar
  3. 3.
    deWet, J.M.J., 1968, Diploid-tetraploid-haploid cycles and the origin of variability in Dichanthium agamospecies. Evolution 22: 394 - 397.CrossRefGoogle Scholar
  4. 4.
    deWet, J.M.J., 1971, Reversible tetraploidy as an evolutionary mechanism. Evolution 25: 545 - 548.CrossRefGoogle Scholar
  5. 5.
    Simpson, G.G., 1953, “The Major Features of Evolution,” Columbia University Press, New York.Google Scholar
  6. 6.
    Bingham, E.T., 1980, Maximizing heterozygosity in autotetraploids. This volume, p. 471.Google Scholar
  7. 7.
    Stebbins, G.L., 1949, The evolutionary significance of natural and artificial polyploids in the family Gramineae. Proc. 8th Inter. Congr. Genet, Hereditas, Suppl. Vol.: 461- 485.Google Scholar
  8. 8.
    Tal, M., 1980, Physiology of Polyploids. This volume, p. 61.Google Scholar
  9. 9.
    Stebbins, G.L., 1971, “Chromosomal Evolution in Higher Plants,” Edward Arnold, London.Google Scholar
  10. 10.
    Kihara, H., Ono, T., 1926, Chromosomenzahlen und systematische Gruppierung der Rumex-Arten. Zeitschr. Zellforsch. 4: 475- 481.Google Scholar
  11. 11.
    Cronquist, A., 1978, Once again: what is a species?, pp. 3- 20, “Biosystematics in Agriculture,” Beltsville Symp. Agr. Reg. 2, Allenheld, Osmuth And Co., Montclair, NJ.Google Scholar
  12. 12.
    Snyder, L.A., 1951, Cytology of inter-strain hybrids and the probable origin of variability in Elymus glaucus. Amer. J. Bot. 38: 195 - 202.CrossRefGoogle Scholar
  13. 13.
    Hiesey, W.M., Nobs, M.A., Bjorkman, 0., 1971, Experimental studies on the nature of species V. Biosystematics, Genetics, and physiological ecology of the Erythranthe section of the genus Mimulus. Carnegie Inst. Wash. Publ. 628, Washington, D.C.Google Scholar
  14. 14.
    deWet, J.M.J., 1980, Origins of Polyploids. This volume, p. 3.Google Scholar
  15. 15.
    Wagner, W.H., Jr., Wagner, F.S., 1980, Polyploid pteridophytes. This volume, p. 199.Google Scholar
  16. 16.
    Stebbins, G.L., Vaarama, A., 1954, Artificial and natural hybrids in the Gramineae, Tribe Hordeae. VII, Hybrids and allopolyploids between Elymus glaucus and Sitanion jubatum. Genetics 39: 379 - 395.Google Scholar
  17. 17.
    Riley, R., Chapman, V., 1958, Genetic control of the cyto- logically diploid behavior of hexaploid wheat. Nature 182: 713 - 715.CrossRefGoogle Scholar
  18. 18.
    Stebbins, G.L., 1950, “Variation and Evolution in Plants,” Columbia University Press, New York.Google Scholar
  19. 19.
    Brittain, W.H., Grant, W.F., 1965, Observations on Canadian birch (Betula) collections at the Morgan Arboretum. I. papyrifera in eastern Canada, Ganad. Field-Nat. 79: 189- 197.Google Scholar
  20. 20.
    Brittain, W.H,, Grant, W.F,, 1965, Observations on Canadian birch (Betula) collections at the Morgan Arboretum. II. papyrifera var. cordifolia. Ganad. Field-Nat. 79: 253 - 257.Google Scholar
  21. 21.
    Brittain, W.H., Grant, W.F., 1967, Observations on Canadian birch (Betula) collections at the Morgan Arboretum. V.B. papyrifera andB. cordifolia from eastern Canada. Ganad. Field-Nat. 81: 251-262,Google Scholar
  22. 22.
    Brittain, W.H., Grant, W.F., 1969, Observations on Canadian birch (Betula) collections at the Morgan Arboretum. VIII, Betula from Grant Manan Island, New Brunswick, Canad, Field-Nat, 83: 361 - 383.Google Scholar
  23. 23.
    Titz, W., 1972, Evolution of the Arabis hirsuta group in Central Europe. Taxon 21: 121 - 128.CrossRefGoogle Scholar
  24. 24.
    Fisher, F., Rowley, J.A., Marchant, C., 1973, The biogeography of the western snow-patch Ranunculi of North America. C.R. Soc. Biogeogr. 438: 32 - 43.Google Scholar
  25. 25.
    Miller, J.M., 1979, Phenotypic variation in diploid and tetraploid populations of Claytonia perfoliata s.I. (Portulacaceae). Syst. Bot. (in press).Google Scholar
  26. 26.
    Ratter, J,R,, 1976, Cytogenetic studies in Spergularia IX. Summary and Conclusions. Notes Roy. Bot. Gard. (Edinburgh) 34: 411 - 428.Google Scholar
  27. 27.
    Baldwin, J.T., Jr., 1941, Galax: the genus and its chromosomes. J. Heredity 32: 249 - 254.Google Scholar
  28. 28.
    Nesan, G., unpublished data.Google Scholar
  29. 29.
    Small. E., 1968, The systematics of autotetraploidy in Epiloblum latifolium (Onagraceae). Brittonia 20: 169 - 181.CrossRefGoogle Scholar
  30. 30.
    Mosquin, T., Small. E., 1971, An example of parallel evolution in Epilobium (Onagraceae). Evolution 25: 678 - 682.Google Scholar
  31. 31.
    Bâcher, T.W., 1962, A cytological and morphological study of the species hybrid Chamaenerion angustifolium x C. latifolium. Bot. Tidsskr. 58: 1 - 34.Google Scholar
  32. 32.
    Ehrendorfer, F., 1980, Polyploidy and distribution. This volume, p. 45.Google Scholar
  33. 33.
    Crosby, M.R., 1980, Polyploidy in bryophytes. This volume, p. 193.Google Scholar
  34. 34.
    Maniotis, J., 1980, Polyploidy in fungi. This volume, p. 163.Google Scholar
  35. 35.
    Nichols, H.W., 1980, Polyploidy in algae. This volume, p. 151.Google Scholar
  36. 36.
    Schultz, R.J., 1980, Role of Polyploidy in the evolution of fishes. This volume, p. 313.Google Scholar
  37. 37.
    Goldblatt, P., 1980, Polyploidy in angiosperms: monocotyledons. This volume, p. 219.Google Scholar
  38. 38.
    Stebbins, G.L., 1974, “Flowering Plants: Evolution above the Species Level,” Harvard University Press, Cambridge, MA.Google Scholar
  39. 39.
    Fedorov, A.N. (ed.), 1969, “Chromosome Numbers of Flowering Plants,” Acad. Sci. USSR Komarov Bot. Inst., Leningrad.Google Scholar
  40. 40.
    Cronquist, A., 1955, Phylogeny and taxomony of the Compositae. Amer. Midi. Nat. 53: 478 - 511.CrossRefGoogle Scholar
  41. 41.
    Al-Shebaz, I.A., 1973, The biosystematics of the genus Thelypodium. Contr. Gray Herb. Harvard Univ. 204: 3 - 148.Google Scholar
  42. 42.
    Constance, L., 1963, Chromosome number and classification in Hydrophyllaceae. Brittonia 15: 273 - 285.CrossRefGoogle Scholar
  43. 43.
    Stebbins, G.L., 1980, Major trends of evolution in the Gramineae and their possible significance (in press).Google Scholar
  44. 44.
    Grant V., 1969, “Natural History of the Phlox Family,” M. Nijhoff, The Hague.Google Scholar
  45. 45.
    Babcock, E.B., 1947, “The Genus Crepis,” Univ. Calif. Publ. Bot., Vols. 21, 22.Google Scholar
  46. 46.
    Stebbins, G.L., 1939, Notes on the systematic relationships of the Old World species and of some horticultural forms of the genus Paeonia. Univ. Calif. Publ. Bot. 19: 245 - 266.Google Scholar
  47. 47.
    Vickery, R.K., Jr., Eldridge, F.A., II, McArthur, E.D., 1976, Cytogenetic patterns of evolutionary divergence in the Mimulus glabratus complex. Amer. Midi. Nat. 95: 377 - 389.CrossRefGoogle Scholar
  48. 48.
    Heckard, L.R., 1960, Taxonomic studies in the Phacelia magellanica—polyploid complex with special reference to the California members. Univ. Calif. Publ. Bot. 32: 1 - 126.Google Scholar
  49. 49.
    MacArthur, R.H., Wilson, E.O., 1967, “The Theory of Island Geography,” Princeton Univ. Press, Princeton, NJ, p. 149; Pianka, E., 1978, “Evolutionary Ecology,” 2nd ed., p. 122.Google Scholar
  50. 50.
    Axelrod, D.I., 1976, History of the coniferous forests, California and Nevada. Univ. Calif. Publ. Bot. 70: 1 - 62.Google Scholar
  51. 51.
    Miki, S., Hikita, S., 1951, Probable chromosome number of fossil Sequoia and Metasequoia found in Japan. Science 113: 3 - 4.PubMedCrossRefGoogle Scholar
  52. 52.
    Takhtajan, A. (ed.), 1974, “Fossil Flowering Plants of the USSR,” Vol. 1. “Nauk” Publ., Leningrad.Google Scholar
  53. 53.
    Hickey, L.J., Doyle, J.A., 1977, Early Cretaceous fossil evidence for angiosperm evolution. Bot. Rev. 43: 3 - 104.CrossRefGoogle Scholar
  54. 54.
    Raven, P., Axelrod, D.I., 1977, Origin and relationships of the California flora. Univ. Calif. Publ. Bot. 72: 1 - 134.Google Scholar
  55. 55.
    Lokki, J., Saura, A., 1980, Polyploidy in insect evolution. This volume, p. 277.Google Scholar
  56. 56.
    Bogart, J.P., 1980, Evolutionary implications of Polyploidy in amphibians and reptiles. This volume, p. 341.Google Scholar
  57. 57.
    Ostenfeld, C.H., 1910, Further studies on the apogamy and hybridization of the Hieracia. Zeitschr. Ind. Abst. Verebungsl. 3: 241 - 285.CrossRefGoogle Scholar
  58. 58.
    Stebbins, G.L., 1932, Cytology of Antennaria. I. Normal species. Bot. Gaz. 94: 134 - 151.CrossRefGoogle Scholar
  59. 59.
    Milntzing, A., MUntzing, G., 1941, Some new results concerning apomixis, sexuality and polymorphism in Potentilla. Bot. Not. ( Lund ): 237 - 278.Google Scholar
  60. 60.
    Stebbins, G.L., Bayer, R, unpublished data.Google Scholar
  61. 61.
    White, M.J.D., 1978, “Modes of Speciation,” W.H. Freeman, San Francisco.Google Scholar
  62. 62.
    Stebbins, G.L., 1958, The inviability, sterility and weakness of interspecific hybrids. Adv. Genetics 9: 147 - 215.CrossRefGoogle Scholar
  63. 63.
    Darlington, C.D., 1939, “The Evolution of Genetic Systems,” Cambridge Univ. Press, Cambridge.Google Scholar
  64. 64.
    Stebbins, G.L., 1960, The comparative evolution of genetic systems, pp. 197-226, to Tax, S. (ed.), “Evolution after Darwin,” 1, University of Chicago Press, Chicago.Google Scholar
  65. 65.
    Grell, K.G., 1953, Die Chromosomen von Aulacantha scolymantha. Haeckel. Arch. Protistenk. 99: 1 - 54.Google Scholar
  66. 66.
    MacKinnon, D.L., Hawes, R.S.D., 1961, “An Introduction to the Study of Protozoa,” Clarendon Press, Oxford.Google Scholar
  67. 67.
    Godward, M.B.E. (ed.), 1966, “The Chromosomes of the Algae,” St. Martin’s Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • G. Ledyard Stebbins
    • 1
  1. 1.Department of GeneticsUniversity of CaliforniaDavisUSA

Personalised recommendations