Polyploidy pp 277-312 | Cite as

Polyploidy in Insect Evolution

  • Juhani Lokki
  • Anssi Saura
Part of the Basic Life Sciences book series (BLSC, volume 13)


The number of existing insect species is estimated to be of the order of between two and a half and three million. More than a third of this number has already been described. In comparison with this diversity, the list of known polyploid insect forms is exceedingly small, less than one hundred.


Insect Evolution Polyploid Form Parthenogenetic Species Weevil Population Polyploid Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Matthey, R., 1954, La polyploidie animale naturelle, Proc. 9th Inter. Congr. Genet. 1: 302–306.Google Scholar
  2. 2.
    Vandel, A., 1946, Le rôle de la polyploidie dans le règne animal. Arch. Julius Klaus-Stift. 21: 397–410.PubMedGoogle Scholar
  3. 3.
    Suomalainen, E., 1959, On Polyploidy in animals, Proc. Finnish Acad. Sci. 1958: 105–119.Google Scholar
  4. 4.
    White, M.J.D., 1973, “Animal Cytology and Evolution,” ed. 3. Cambridge University Press, Cambridge.Google Scholar
  5. 5.
    Suomalainen, E., 1950, Parthenogenesis in animals. Advances Genet. 3: 193–253.CrossRefGoogle Scholar
  6. 6.
    Seiler, J., 1963, Untersuchungen über die Entstehung der Parthenogenese bei Solenobia triquetrella F.R. (Lepidoptera, Psychidae). IV. Z. Vererbungsl. 94: 29–66.CrossRefGoogle Scholar
  7. 7.
    Narbel-Hofstetter, M., 1950, La cytologie de la parthénogenèse chez Solenobia sp. (lichenella L.?) (Lépidoptères, Psychides). Chromosoma 4: 56–90.PubMedCrossRefGoogle Scholar
  8. 8.
    Suomalainen, E., Saura, A., Lokki, J., 1976, Evolution of parthenogenetic insects, pp. 209–257, in Hecht, M., Steer, W., Wallace, B. (eds.), “Evolutionary Biology,” Vol. 9, Plenum, New York.Google Scholar
  9. 9.
    Degrange, C., 1960, Recherches sur la reproduction des Ëphéméroptêres. Trav. Lab. Hydrobiol. Piscicult. (Grenoble) 50–51: 7–193.Google Scholar
  10. 10.
    Goldschmidt, E. 1946, Polyploidy and parthenogenesis in the genus Saga. Nature 158: 587–588.PubMedCrossRefGoogle Scholar
  11. 11.
    Matthey, R., 1941, Etude biologique et cytologique de Saga pedo Pallas (Orthopteres: Tettigoniidae), Rev. Suisse Zool. 48: 91–142.Google Scholar
  12. 12.
    Matthey, R., 1946, Demonstration du charactere geographique de la Parthenogenese de Saga pedo Pallas et de la polyploidie, par comparison avec les espèces bisexuées S. ephippigera Fisch, et S. gracilipes Uvar. Experientia 2: 260–261.CrossRefGoogle Scholar
  13. 13.
    Nur, U., 1979, Gonoid thelytoky in soft scale insects (Coccidae: Homoptera). Chromosoma 72: 89–104.CrossRefGoogle Scholar
  14. 14.
    Drosopoulos, S., 1976, Triploid pseudogamous biotype of the leafhopper Muellerianella fairmairei. Nature 263: 499–500.PubMedCrossRefGoogle Scholar
  15. 15.
    Drosopoulos, S., 1978, Laboratory synthesis of a pseudogamous triploid “species” of the genus Muellerianella (Homoptera, Delphacidae). Evolution 32: 916–920.CrossRefGoogle Scholar
  16. 16.
    Suomalainen, E., 1978, Two new cases of parthenogenesis in moths. Nota Lepidopterologica 1: 65–68.Google Scholar
  17. 17.
    Seiler, J., 1923, Geschlechtschromosomenuntersuchungen an Psychiden. IV. Die Parthenogenese der Psychiden. Z. indukt. Abstammungs. Vererbungsl. 31: 1–99.CrossRefGoogle Scholar
  18. 18.
    Seiler, J., 1943, Uber den Ursprung der Parthenogenese und Polyploidie bei Schmetterlingen. Arch. Julius Klaus-Stift. 18: 691–699.Google Scholar
  19. 19.
    Seiler, J., 1964, Untersuchungen über die Entstehung der Parthenogenese bei Solenobia triquetrella F.R. (Lepidoptera, Psychidae). V. Chromosoma 15: 503–539.CrossRefGoogle Scholar
  20. 20.
    Seiler, J., Schäffer, K., 1960, Untersuchungen über die Entstehung der Parthenogenese bei Solenobia triquetrella F.R. (Lepidoptera, Psychidae). II. Chromosoma 11: 29–102.CrossRefGoogle Scholar
  21. 21.
    Seiler, J., Puchta, 0., 1956, Die Fortpflanzungsbiologie der Solenobien (Lepid. Psychidae), Verhalten bei Artkreuzungen und F -Resultate. Roux’ Arch. Entwicklungsmech. 149: 115–246.Google Scholar
  22. 22.
    Suomalainen, E., personal communication.Google Scholar
  23. 23.
    Scholl, H., 1956, Die Chromosomen parthenogenetischer Mücken. Naturwissenschaften 43: 91–92.CrossRefGoogle Scholar
  24. 24.
    Scholl, H., 1960, Die Oogenese einiger parthenogenetischer Orthocladiinen (Diptera). Chromosoma 11: 380–401.PubMedCrossRefGoogle Scholar
  25. 25.
    Basrur, V.R., Rothfels, K.H., 1959, Triploidy in natural populations of the black fly Cnephia mutata (Malloch.). Canad. J. Zool. 37: 571–589.CrossRefGoogle Scholar
  26. 26.
    Troiano, G., 1978, Triploidy in the natural population of the Psychodine moth fly Psychoda parthenogenetica Tonnoir (Diptera: Psychodidae). Caryologia 31: 225–232.Google Scholar
  27. 27.
    Block, K., 1969, Chromosome variation in the Agromyzidae. II. Phytomyza crassiseta Zetterstedt - a parthenogenetic species. Hereditas 62: 357–381.PubMedCrossRefGoogle Scholar
  28. 28.
    Stalker, H.D., 1956, A case of Polyploidy in Diptera. Proc. Nat. Acad. Sci. USA 42: 194–199.PubMedCrossRefGoogle Scholar
  29. 29.
    Sanderson, A.R., 1960, The cytology of a diploid bisexual spider beetle Ptinus clavipes Panzer and its triploid gynogenetic form mobilis Moore. Proc. Roy. Soc. Edinb. (B) 67: 333–350.Google Scholar
  30. 30.
    Suomalainen, E., 1965, Die Polyploidie bei dem parthenogenetischen Blattkäfer Adoxus obscurus L. (Coleóptera, Chrysomelidae). Zool. Jahrb. Syst. 92: 183–192.Google Scholar
  31. 31.
    Robertson, J.G., 1966, The chromosomes of bisexual and parthenogenetic species of Calligrapha (Coleoptera: Chrysomelidae) with notes on sex ratio, abundance and egg number. Canad. J. Genet. Cytol. 8: 695–732.Google Scholar
  32. 32.
    Suomalainen, E., 1969, Evolution in parthenogenetic Curculionidae, pp. 261–269, in Dobzhansky, T., Hecht, M., Steere, W. (eds.), “Evolutionary Biology,” Vol. 3. Appleton-Century-Crofts. New York.Google Scholar
  33. 33.
    Sanderson, A.R., 1973, The cytology of the parthenogenetic Australian weevil Listroderes costirostris Schönh. Trans. Roy. Soc. Edinb. 69: 71–89.Google Scholar
  34. 34.
    Petryszak, B., 1972, Chromosome numbers of Foucartia liturata Striel., Foucartia squamulata (Herbst) and Sciaphilus asperatus (Bonsd.) (Curculionidae, Coleoptera). Prac. Zool. Univ. Jag. 18: 27–60.Google Scholar
  35. 35.
    Takenouchi, Y., 1976, A study of Polyploidy in races of Japanese weevils (Coleoptera: Curculionidae). Genetica 46: 327–334.CrossRefGoogle Scholar
  36. 36.
    Suomalainen, E., 1947, Parthenogenese und Polyploidie bei Rüsselkäfern (Curculionidae). Hereditas 33: 425–456.PubMedCrossRefGoogle Scholar
  37. 37.
    Takenouchi, Y., 1970, Three further studies of the chromosomes of Japanese weevils (Coleoptera: Curculionidae). Canad. J. Genet. Cytol. 12: 273–277.Google Scholar
  38. 38.
    Takenouchi, Y., 1972, A chromosome study of a new polyploid parthenogenetic weevil, Myllocerus nipponicus Zumpt. (Coleoptera: Curculionidae), Kontyû 40: 121–123.Google Scholar
  39. 39.
    Takenouchi, Y., personal communication.Google Scholar
  40. 40.
    Takenouchi, Y., 1972, A chromosome study on two new Japanese parthenogenetic weevils (Coleoptera: Curculionidae). Jap. J. Genet. 47: 19–22.CrossRefGoogle Scholar
  41. 41.
    Petryszak, P., 1975, Chromosome number of Trachyphloeus scabriculus (L.) and T. aristatus (Gyll.) (Coleoptera, Curculionidae), Acta Biol. Cracov. Ser. Zool. 18: 91–95.Google Scholar
  42. 42.
    Takenouchi, Y., 1976, A chromosome study on two new Japanese polyploid parthenogenetic weevils (Coleoptera: Curculionidae), pp. 341–348, Pearson, P.L., Lewis, K.R. (eds.), “Chromosome Today,” Vol. 5. John Wiley & Sons, New York.Google Scholar
  43. 43.
    Takenouchi, Y., 1978, A chromosome study of the parthenogenetic rice water weevil, Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae), in Japan. Experientia 34: 444–445.Google Scholar
  44. 44.
    Crozier, R.H., 1975, “Hymenoptera. Animal Cytogenetics,” Vol. 3, Insecta 7, Gebrüder Borntraeger, Berlin, Stuttgart.Google Scholar
  45. 45.
    Smith, S.G., 1941, A new form of spruce sawfly identified by means of its cytology and parthenogenesis. Sci. Agric. 21: 244–305.Google Scholar
  46. 46.
    Vandel, A., 1928, La parthénogenèse géographique. Contribution à l’étude biologique et cytologique de la parthénogenèse naturelle, Bull. Biol. France Belg. 62: 164–281.Google Scholar
  47. 47.
    Seiler, J., 1961, Untersuchungen über die Entstehung der Parthenogenese bei Solenobia triquetrella F.R. (Lepidoptera, Psychidae), III. Z. Vererbungsl. 92: 261–316.CrossRefGoogle Scholar
  48. 48.
    Mikulska, I., 1960, New data on the cytology of the parthenogenetic weevils of the genus Otiorrhynchus Germ. (Curculionidae, Coleoptera) from Poland. Cytologia 25: 322–333.CrossRefGoogle Scholar
  49. 49.
    Suomalainen, E., 1948, Parthenogenesis and Polyploidy in the weevils, Curculionidae. Ann. Entomol. Fenn. 14, Suppl.: 206–212.Google Scholar
  50. 50.
    Suomalainen, E., 1953, Die Polyploidie bei den parthenogenetischen RüsselkMfern. Verh. Deutsch. Zool. Ges. 1952; Zool. Anz., Suppl. 17: 280–289.Google Scholar
  51. 51.
    Suomalainen, E., 1954, Zur Zytologie der parthenogenetischen Curculioniden der Schweiz. Chromosoma 6: 627–655.PubMedCrossRefGoogle Scholar
  52. 52.
    Suomalainen, E., 1955, A further instance of geographical parthenogenesis and Polyploidy in the weevils, Curculionidae. Arch. Soc. “Vanamo” 9, suppl.: 350–354.Google Scholar
  53. 53.
    Takenouchi, Y., 1972, Chromosome numbers of Japanese weevils of Curculionoidea (Coleoptera). Kontyû 40: 123–132.Google Scholar
  54. 54.
    Takenouchi, Y., 1978, A further chromosome study on races of two reportedly Japanese polyploid parthenogenetic weevils (Coleoptera: Curculionidae). J. Hokkaido Univ. Educ. II B 29: 1–4.Google Scholar
  55. 55.
    Lindroth, C.H., 1954, Experimentelle Beobachtungen an parthe- nogenetischem und bisexuellem Otiorrhynchus dubius Stroem. Coleoptera: Curculionidae). Entomol. Tidskrift 75: 111–116.Google Scholar
  56. 56.
    Suomalainen, E., 1961, On morphological differences and evolution of different polyploid parthenogenetic weevil populations. Hereditas 47: 309–341.CrossRefGoogle Scholar
  57. 57.
    Seiler, J., 1947, Die Zytologie eines parthenogenetischen Rüsselkäfers, Otiorrhynchus sulcatus F. Chromosoma 3: 88–109.CrossRefGoogle Scholar
  58. 58.
    Seiler, J., 1927, Ergebnisse aus der Kreuzung parthenogenetischer und zweigeschlechtlicher Schmetterlinge. Biol. Zentralbl. 47: 426–446.Google Scholar
  59. 59.
    Suomalainen, E., 1940, Beiträge zur Zytologie der partheno-genetischen Insekten. I. Coleoptera. Ann. Acad. Sci. Fenn. A 54: 1 - 144.Google Scholar
  60. 60.
    Chubareva, L.A., Tzapygina, R.I., 1965, On the triploids in the natural populations of Odagmia ornata ornata (Simuliidae, Diptera). Genetika 3: 15–18.Google Scholar
  61. 61.
    Chubareva, L.A., Grinchuk, T.M., Kachvoryan, E.A., 1974, On the occurrence of triploid individuals in the natural popuations of blackflies. Tsitologia 16: 253–255.Google Scholar
  62. 62.
    Astaurov, B.L., 1972, Experimental model of the origin of bisexual polyploid species of animals. Biol. Zbl. 91: 137–150.Google Scholar
  63. 63.
    Maynard Smith, J., 1978, “The Evolution of Sex.” Cambridge University Press, Cambridge.Google Scholar
  64. 64.
    Suomalainen, E., Saura, A., 1973, Genetic polymorphism and evolution in parthenogenetic animals. I. Polyploid Curculionidae. Genetics 74: 489–508.PubMedGoogle Scholar
  65. 65.
    Webb, G.C., White, M.J.D., Contreras, N., Cheney, J., 1978, Cytogenetics of the parthenogenetic grasshopper Warramaba (formerly Moraba) virgo and its bisexual relatives. IV. Chromosome banding studies. Chromosoma 67: 309–339.CrossRefGoogle Scholar
  66. 66.
    White, M.J.D., 1970, Heterozygosity and genetic polymorphism in parthenogenetic animals, pp. 237-262, in Hecht, M.K., Steere, W.C. (eds.), “Essays in Evolution and Genetics in Honor of Theodosius Dobzhansky,” (suppl.) “Evolutionary Biology,” Appleton-Century-Crofts, New York.Google Scholar
  67. 67.
    Porter, D.L., 1971, Oogenesis and chromosomal heterozygosity in the telytokous midge, Lundstroemia parthenogenetica (Diptera, Chironomidae). Chromosoma 32: 333–342.CrossRefGoogle Scholar
  68. 68.
    Lakovaara, S., Saura, A., 1972, Location of enzyme loci in chromosomes of Drosophila willistoni. Experientia 28: 355–356.PubMedCrossRefGoogle Scholar
  69. 69.
    Smith, S.G., 1971, Parthenogenesis and Polyploidy in beetles. Amer. Zool. 11: 341–349.Google Scholar
  70. 70.
    Saura, A., Lokki, J., Lankinen, P., Suomalainen, E., 1976, Genetic polymorphism and evolution in parthenogenetic animals. III. Tetraploid Otiorrhynchus scaber (Coleoptera: Curculionidae). Hereditas 82: 79–100.PubMedCrossRefGoogle Scholar
  71. 71.
    Lokki, J., Saura, A., Lankinen, P., Suomalainen, E., 1976, Genetic polymorphism and evolution in parthenogenetic animals. VI. Diploid and triploid Polydrosus mollis (Coleoptera: Curculionidae). Hereditas 82: 209–216.PubMedCrossRefGoogle Scholar
  72. 72.
    Saura, A., Lokki, J., Lankinen, P., Suomalainen, E., 1976, Genetic polymorphism and evolution in parthenogenetic animals. IV. Triploid Otiorrhynchus salicis (Coleoptera: Curculionidae). Entomol. Scand. 7: 1–6.CrossRefGoogle Scholar
  73. 73.
    Ahti, T., Hämet-Ahti, L., Jalas, J., 1968, Vegetation zones and their sections in northwestern Europe. Ann. Bot. Fenn. 5: 169–211.Google Scholar
  74. 74.
    Takenouchi, Y., 1968, A chromosome study on bisexual and parthenogenetic races of Scepticus insularis Roelofs (Curculionidae: Coleoptera). Ganad. J. Genet. Cytol. 10: 945–950.Google Scholar
  75. 75.
    Saura, A., Lakovaara, S., Lokki, J., Lankinen, P., 1973, Genie variation in central and marginal populations of Drosophila subobscura. Hereditas 75: 33–46.PubMedCrossRefGoogle Scholar
  76. 76.
    Lokki, J., Saura, A., Lankinen, P., Suomalainen, E., 1976, Genetic polymorphism and evolution in parthenogenetic animals. V. Triploid Adoxus obscurus (Coleoptera: Chrysomelidae). Genet. Res. 28: 27–36.PubMedCrossRefGoogle Scholar
  77. 77.
    Saura, A., Lokki, J., Suomalainen, E., 1977, Selection and genetic differentation in parthenogenetic populations. Lecture Notes in Biomathematics 19: 381–402.Google Scholar
  78. 78.
    Lokki, J., Suomalainen, E., Saura, A., Lankinen, P., 1975, Genetic polymorphism and evolution in parthenogenetic animals. II. Diploid and polyploid Solenobia triquetrella (Lepidoptera: Psychidae). Genetics 79: 513–525.PubMedGoogle Scholar
  79. 79.
    Lokki, J., 1976, Genetic polymorphism and evolution in parthenogenetic animals. VIII. Heterozygosity in relation to Polyploidy. Hereditas 83: 65–72.PubMedCrossRefGoogle Scholar
  80. 80.
    Darlington, C.D., 1937, “Recent Advances in Cytology,” ed. 2, J. and A. Churchill, London.Google Scholar
  81. 81.
    White, M.J.D., 1945, “Animal Cytology and Evolution,” Cambridge University Press, Cambridge.Google Scholar
  82. 82.
    Asher, J.H.,Jr., 1970, Parthenogenesis and genetic variability. II. One-locus models for various diploid populations. Genetics 66: 369–391.Google Scholar
  83. 83.
    Asher, J.H., Nace, G.W., 1971, The genetic structure and evolutionary fate of parthenogenetic Amphibian populations as determined by Markovian analysis. Amer. Zool. 11: 381–398.Google Scholar
  84. 84.
    Templeton, A.R., Rothman, E.D., 1973, The population genetics of parthenogenetic strains of Drosophila mercatorum. I. One locus model and statistics. Theor. Appl. Genet. 43: 204–212.CrossRefGoogle Scholar
  85. 85.
    Lokki, J., 1976, Genetic polymorphism and evolution in parthenogenetic animals. VII. The amount of heterozygosity in diploid populations. Hereditas 83: 57–64.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Juhani Lokki
    • 1
  • Anssi Saura
    • 1
  1. 1.Department of GeneticsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations