Acoustic-Optical Phonon Interactions in Solids

  • G. P. Srivastava


We present here a scheme of studying the role of optical phonons in heat transfer and in generating heat resistance via various three-phonon acoustic-optical N and U processes. Using the Debye dispersion law in the reduced zone scheme we write for acoustic modes ω= cq and for optical modes ωo = ωD + ωg + co (qD − q), where ωD is the Debye frequency for the corresponding acoustic polarization mode, qD is the Debye radius, c and co are, respectively, acoustic and optical phonon velocities, and ωg is the frequency gap at the zone boundary. Following Klemens1 we introduce a factor \(r = 2/\sqrt 3 (\alpha - \beta )\,/\,(\alpha + \beta )\) to reduce the cubic anharmonic Hamiltonian for optical phonons. Here α and β are two effective force constants such that at the zone boundary α/β = (ωoD)2.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. G. Klemens, Phys. Rev. 148: 845 (1966).ADSCrossRefGoogle Scholar
  2. 2.
    G. P. Srivastava, Phil. MagT 34: 795 (1976).ADSCrossRefGoogle Scholar
  3. 3.
    W. Cochran, Proc. Roy. Soc. (London) A253: 260 (1959).Google Scholar
  4. 4.
    Yu. A. Logachev and M. S. Yur’ev, Soviet Phys. - Solid State 14: 2826 (1973).Google Scholar
  5. 5.
    D. J. Ecsedy and P. G. Klemens, Phys. Rev. B15: 5957 (1977).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • G. P. Srivastava
    • 1
  1. 1.Physics DepartmentNew University of UlsterColeraineN. Ireland

Personalised recommendations